Alzheimer's disease (AD) remains the most prevalent neurodegenerative disease, and no effective treatment is available yet. Metal-ion-triggered aggregates of amyloid-beta (A) peptide and acetylcholine imbalance are reported to be possible factors in AD pathogenesis. Thus, a combination therapy that can not only inhibit and reduce A aggregation but also simultaneously regulate acetylcholine imbalance that can serve as a potential treatment for AD is needed.
View Article and Find Full Text PDFCorrection for 'An NIR-responsive mesoporous silica nanosystem for synergetic photothermal-immunoenhancement therapy of hepatocellular carcinoma' by Han Yang et al., J. Mater.
View Article and Find Full Text PDFTo create a more precise, efficient imaging and therapeutic strategy is a big challenge for the current treatment of hepatocellular carcinoma (HCC). Photothermal therapy (PTT) has attracted enormous attention due to its non-invasive property and precise spatial and temporal control. Here, we developed a strategy to realize superior imaging performance and treatment, utilizing an indocyanine green (ICG) and sorafenib (S) co-loaded mesoporous silica nanosystem for synergetic PTT/immuno-enhanced therapy.
View Article and Find Full Text PDF