Mythimna separata is a notorious phytophagous pest which poses serious threats to cereal crops owing to the gluttony of the larvae. Because short neuropeptide F (sNPF) and its receptor sNPFR are involved in a diversity of physiological functions, especially in functions related to feeding in insects, it is a molecular target for pest control. Herein, an sNPF and 2 sNPFRs were identified and cloned from M.
View Article and Find Full Text PDFArch Insect Biochem Physiol
October 2021
The olfactory system must detect and discriminate various semiochemicals in the environment. In response to such diversity, insects have evolved a family of odorant-gated ion channels composed of a common receptor (coreceptor, Orco) and a ligand-binding tuning odorant receptor (OR) that confers odour specificity. This study aims to examine the expression pattern of Orco gene of Grapholita molesta (GmolOrco) and to elucidate the role of GmolOrco in detecting G.
View Article and Find Full Text PDFBull Entomol Res
August 2021
The oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) is a major migratory pest of cereal crops in East Asia, South Asia and Australia. To comprehensively understand the ecological tolerance of M. separata, we collected life table data of individuals from four consecutive generations reared under outdoor natural fluctuating temperatures from 15 April to 17 October 2018 in Yangling, Shaanxi, China.
View Article and Find Full Text PDFThe oriental armyworm, , is a serious agricultural pest in China. Seasonal and roundtrip migration has recently led to sudden, localized outbreaks and crop losses. To evaluate genetic differentiation between populations in eastern and western China and elucidate gene flow, the genetic structure of 20 natural populations from nine provinces was examined using seven microsatellite markers.
View Article and Find Full Text PDFGrapholita molesta is one of the most destructive fruit pests distributed worldwide. Odorant receptors (ORs) located on the dendritic membrane of chemosensory neurons are deemed to be key molecules for sensing exogenous chemical signals. In this study, GmolOR9, a general OR from G.
View Article and Find Full Text PDFChemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth , we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8.
View Article and Find Full Text PDFOdorant-binding proteins (OBPs) are widely and abundantly distributed in the insect sensillar lymph and are essential for insect olfactory processes. The OBPs can capture and transfer odor molecules across the sensillum lymph to odorant receptors and trigger the signal transduction pathway. In this study, a putative OBP gene, 7, was cloned using specific-primers, based on the annotated unigene which forms the antennal transcriptome of .
View Article and Find Full Text PDFInsect antennae have a primary function of perceiving and discerning odorant molecules including sex pheromones and host plant volatiles. The assumption that genes highly expressed in the antennae may have an olfactory-related role associated with signal transduction. Here, one delta subfamily glutathione S-transferase (GST) gene (GmolGSTD1) was obtained from an antennal transcriptome of Grapholita molesta.
View Article and Find Full Text PDFOdorant binding proteins (OBPs) act in recognizing odor molecules and their most well-studied functions are transporting odors across the sensillum lymph to olfactory receptor neurons within the insect antennal sensillum. The adults of Grapholita molesta highly depend on olfactory cues in locating host plants and selecting oviposition sites, in which OBPs play an important role in perceiving and recognizing host plant volatiles. Exploring the physiological function of OBPs could facilitate our understanding of their importance in insects' chemical communication.
View Article and Find Full Text PDFHerbivore-induced terpenes have been reported to function as ecological signals in plant-insect interactions. Here, we showed that insect-induced cotton volatile blends contained 16 terpenoid compounds with a relatively high level of linalool. The high diversity of terpene production is derived from a large terpene synthase (TPS) gene family.
View Article and Find Full Text PDFOdorant-binding proteins (OBPs) act in insect olfactory processes. OBPs are expressed in the olfactory organs and serve in binding and transport of hydrophobic odorants through the sensillum lymph to olfactory receptor neurons within the antennal sensilla. In this study, three OBP genes were cloned from the antennal transcriptome database of Grapholita molesta via reverse-transcription PCR.
View Article and Find Full Text PDFIn response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and volatile characteristics of cotton plants in response to cotton bollworm (CBW; Helicoverpa armigera) larvae infestation.
View Article and Find Full Text PDFGrapholita molesta (Busck) is a worldwide insect pest damaging stone and pome fruits. High temperature can significantly affect insect survival, development and fecundity. Heat shock protein (Hsp) genes were speculated to possess a pivotal function in response to high temperature stress.
View Article and Find Full Text PDFTwo novel general odorant-binding protein (GOBP) cDNAs (GmolGOBP1 and GmolGOBP2) were cloned and characterized from female antennal tissue of the oriental fruit moth, Grapholita molesta. We focused our investigation on this olfactory protein family by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends-PCR (RACE-PCR). The full-length open reading frames of GmolGOBP1 and GmolGOBP2 were 492 and 483 nucleotides long, which encode 164 and 161 amino acid residue peptides, respectively.
View Article and Find Full Text PDFThe activities of protective enzymes peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in pre-diapause, diapause, and post-diapause larvae of Sitodiplosis mosellana Gehin were determined by using protective enzyme testing kits. The results indicated that the activities of the three protective enzymes showed a decreasing trend from pre-diapause to early diapause larvae. In one-year cycle, the SOD and CAT activities of diapause larvae had the same responses to environmental temperature, i.
View Article and Find Full Text PDF