BK channels are expressed in mouse cochlear inner hair cells (IHCs) and exhibit Ca-independent activation at negative potentials. However, the mechanism underlying Ca-independent activation of the BK channels in mouse IHCs remains unknown. In this study, we found the BK channel expressed in IHCs contains both the STREX-2 (stress axis regulated exon) variant and an alternative splice of exon9 (alt9), which significantly shift the voltage dependence of the BK channels when co-expressed with LRRC52 in 0 [Ca].
View Article and Find Full Text PDFThe transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the oocytes system.
View Article and Find Full Text PDFBackground: Forkhead box C1 (FOXC1) is an important cancer-associated gene in tumor. PPAR-γ and C/EBPα are both transcriptional regulators involved in tumor development.
Objective: We aimed to clarify the function of PPAR-γ, C/EBPα in hepatocellular carcinoma (HCC) and the relationship of PPAR-γ, C/EBPα and FOXC1 in HCC.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
June 2011
Objective: To investigate the brain oxidative stress injury induced by nano-alumina particles in ICR mice.
Methods: Sixty male ICR mice were randomly divided into 6 groups: control group, solvent control group, 100 mg/kg micro-alumina particles group, 3 groups exposed to nano-alumina particles at the doses of 50, 100 and 200 mg/kg. The mice were exposed by nasal drip for 30 days.