Publications by authors named "Jun-Tung Fang"

A class of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones were designed and synthesized via Michael addition, cyclization, aldol condensation, and deprotonation to inhibit the human transmembrane protease serine 2 (TMPRSS2) and Furin, which are involved in priming the SARS-CoV-2 Spike for virus entry. The most potent inhibitor 2f (81) was found to efficiently inhibit the replication of various SARS-CoV-2 delta and omicron variants in VeroE6 and Calu-3 cells, with EC range of 0.001-0.

View Article and Find Full Text PDF

Although real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) remains as a golden standard for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it can not be easily expanded to large-scaled screening during outbreaks, and the positive results do not necessarily correlate with infectious status of the identified subjects. In this study, the performance of Vstrip® RV2 COVID-19 Antigen Rapid Test (RAT) and its correlation with virus infectivity was examined by virus culture using 163 sequential respiratory specimens collected from 26 SARS-CoV-2 infected patients. When the presence of cytopathic effects (CPE) in cell culture was used as a reference method for virus infectivity, the sensitivity, specificity and accuracy of Vstrip® RV2 COVID-19 Antigen Rapid Test was 96.

View Article and Find Full Text PDF

Low power microwave can effectively deactivate influenza type A virus through the nonthermal structure-resonant energy transfer effect, at a frequency matching the confined-acoustic dipolar mode frequency of the virus. Currently, aerosol is considered the major route for SARS-CoV-2 transmission. For the potential microwave-based sterilization, the microwave-resonant frequency of SARS-CoV-2 must be unraveled.

View Article and Find Full Text PDF

Most of SARS-CoV-2 neutralizing antibodies (nAbs) targeted the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, mutations at RBD sequences found in the emerging SARS-CoV-2 variants greatly reduced the effectiveness of nAbs. Here we showed that four nAbs, S2-4D, S2-5D, S2-8D, and S2-4A, which recognized a conserved epitope in the S2 subunit of the S protein, can inhibit SARS-CoV-2 infection through blocking the S protein-mediated membrane fusion.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has altered the trajectory of the COVID-19 pandemic and raised some uncertainty on the long-term efficiency of vaccine strategy. The development of new therapeutics against a wide range of SARS-CoV-2 variants is imperative. We, here, have designed an inhalable siRNA, C6G25S, which covers 99.

View Article and Find Full Text PDF

Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been rapidly spreading worldwide, causing hundreds of millions of infections. Despite the development of vaccines, insufficient protection remains a concern. Therefore, the screening of drugs for the treatment of coronavirus disease 2019 (COVID-19) is reasonable and necessary.

View Article and Find Full Text PDF