Background And Purpose: No research currently exists on the role of the accessory parotid gland (APG) in nasopharyngeal carcinoma (NPC). We thereby aimed to assess the effects of APG on the dosimetry of the parotid glands (PGs) during NPC radiotherapy and evaluate its predictive value for late xerostomia.
Material And Methods: The clinical data of 32 NPC patients with radiological evidence of the APG treated at Sun Yat-sen Memorial Hospital between November 2020 and February 2021 were retrospectively reviewed.
Purpose: To investigate the fixed-jaw intensity-modulated radiotherapy (F-IMRT) and tangential partial volumetric modulated arc therapy (tP-VMAT) treatment plans for synchronous bilateral breast cancer (SBBC).
Materials And Method: Twelve SBBC patients with pTis-2N0M0 stages who underwent whole-breast irradiation after breast-conserving surgery were planned with F-IMRT and tP-VMAT techniques prescribing 42.56 Gy (2.
Neural stem cells (NSCs) exhibit preferential homing toward some types of brain lesion, but their migratory property during radiation brain injury (RBI) remains unexplored. Here, we use the superparamagnetic iron oxide (SPIO)-labeled magnetic resonance imaging (MRI) technology to determine the migration of transplanted NSCs in two partial RBI models in real time created by administering 30-55 Gy of radiation to the right or posterior half of the adult rat brain. SPIO-labeled NSCs were stereotactically grafted into the uninjured side one week after RBI.
View Article and Find Full Text PDFTangential irradiation is the most popular postoperative radiotherapy technique for breast cancer. However, irradiation has been related to symptomatic radiation pneumonitis (SRP), which decreases the quality of life of patients. This study investigated the clinical features and dosimetric parameters related to SRP of the ipsilateral lung to identify risk factors for SRP in breast cancer patients after three-dimensional conformal radiation therapy (3D-CRT) with tangential fields.
View Article and Find Full Text PDF