Background: Homologous chromosomes separate in meiosis I and sister chromatids separate in meiosis II, generating haploid gametes. To address the question why sister chromatids do not separate in meiosis I, we explored the roles of Shogoshin1 (Sgo1) in chromosome separation during oocyte meiosis.
Methodology/principal Findings: Sgo1 function was evaluated by exogenous overexpression to enhance its roles and RNAi to suppress its roles during two meioses of mouse oocytes.
The role of androgen and androgen receptors (ARs) in males has been well established. This steroid and its receptor also exist in follicles, but their functions are still unclear. In this study, using a culture system containing a low dose of hypoxanthine, we revealed the positive contribution of testosterone to oocyte meiotic resumption.
View Article and Find Full Text PDFSpindle movement, including spindle migration during first meiosis and spindle rotation during second meiosis, is essential for asymmetric divisions in mouse oocytes. Previous studies by others and us have shown that microfilaments are required for both spindle migration and rotation. In the present study, we aimed to further investigate the mechanism controlling spindle movement during mouse oocyte meiosis.
View Article and Find Full Text PDFBRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage.
View Article and Find Full Text PDFSpindle movements, including spindle migration from the center to the cortex of oocytes during first meiosis and spindle rotation during second meiosis, are required for asymmetric meiotic divisions in many species. However, little is currently known in relation to the rat oocyte. To explore how spindles move and the mechanism controlling spindle movements in rat oocytes, we observed the spindle dynamics during the two meiotic divisions in the rat oocyte by confocal microscopy.
View Article and Find Full Text PDFHeterochromatin protein 1 (HP1) is closely associated with diverse chromatin organization and function in mitosis. However, we almost know nothing about HP1 in mammalian oocyte. Here, we investigated the subcellular distribution of HP1alpha and its spatial relationship to histone modifications during mouse oocyte maturation.
View Article and Find Full Text PDFWe recently reported that MEK1/2 plays an important role in microtubule organization and spindle pole tethering in mouse oocytes, but how the intracellular transport of this protein is regulated remains unknown. In the present study, we investigated the mechanisms of poleward MEK1/2 transport during the prometaphase I/metaphase I transition and MEK1/2 release from the spindle poles during the metaphase I/anaphase I transition in mouse oocytes. Firstly, we found that p-MEK1/2 was colocalized with dynactin at the spindle poles.
View Article and Find Full Text PDFSo far, standard follicle culture systems can produce blastocyst from less than 40% of the in vitro matured oocytes compared to over 70% in the in vivo counterpart. Because the capacity for embryonic development is strictly associated with the terminal stage of oocyte growth, the nuclear maturity status of the in vitro grown oocyte was the subject of this study. Mouse early preantral follicles (100-130 microm) and early antral follicles (170-200 microm) isolated enzymatically were cultured for 12 and 4 days, respectively, in a collagen-free dish.
View Article and Find Full Text PDFChromatin transformation from a diffused or NSN configuration to a compacted or SN shape that forms a ring around the nucleolus is regarded as one of the modifications necessary for successful embryonic development. But the process of the transformation is poorly understood. In this study we cultured mouse antral oocytes under meiotic arrest with IBMX for periods between 3 and 24 hr.
View Article and Find Full Text PDFIn mitosis the checkpoint proteins ensure faithful chromosome segregation by delaying onset of anaphase until all sister chromatids align at the metaphase plate of the bipolar spindle correctly. In the present study we blocked the function of Bub1 during meiosis by microinjecting anti-Bub1 specific antibody into cytoplasm of mouse oocytes, and found that depletion of Bub1 induced evident cyclin B degradation and precocious anaphase onset. Bub1 suppression also overrode the checkpoint-dependent cell cycle arrest provoked by a low dosage of nocodazole.
View Article and Find Full Text PDFEpigenetic regulation of pericentromeric heterochromatin is crucial for proper interactions between kinetochores and spindle microtubules governing accurate chromosome segregation. Here, we first examined the dynamic distribution of phosphorylated serine 10 and 28 on H3 during mouse oocyte maturation and early embryo development using immunofluorescent staining and confocal microscopy. Our results revealed strong signals of phosphorylated H3/ser10 and 28 in the pericentromeric heterochromatin area and continuous persistent staining of the chromosome periphery, respectively.
View Article and Find Full Text PDFAlthough securin/separase/cohesion pathway was reported to regulate chromosome segregation during meiotic metaphase-to-anaphase transition, little biochemical evidence was provided. We recently found that oocytes could not progress beyond meiotic metaphase when ubiquitin-proteasome pathway was inhibited, but the mechanisms remain unclear. In the present study, we investigated the quantity of securin and Rec8 protein and the localization of securin, a cohesion subunit, during oocyte meiosis providing data in support of the hypothesis that the effect of ubiquitin-proteasome pathway on metaphase-to-anaphase transition was mediated by regulating securin and Rec8 degradation in mouse and pig oocytes.
View Article and Find Full Text PDFHistone acetylation is associated with a diversity of chromatin-related processes in mitosis. However, its roles in mammalian oocyte meiosis are largely unknown. In the present study, we first investigated in detail the acetylation changes during porcine oocyte maturation using a panel of antibodies specific for the critical acetylated forms of histone H3 and H4, and showed meiosis stage-dependent and lysine residue-specific patterns of histone acetylation.
View Article and Find Full Text PDF