Cerebral amyloid-β (Aβ) accumulation due to impaired Aβ clearance is a pivotal event in the pathogenesis of Alzheimer's disease (AD). Considerable brain-derived Aβ is cleared via transporting to the periphery. The liver is the largest organ responsible for the clearance of metabolites in the periphery.
View Article and Find Full Text PDFBackground: The kidney-brain crosstalk has been involved in Alzheimer's disease (AD) with the mechanism remaining unclear. The anti-aging factor Klotho was reported to attenuate both kidney injury and AD pathologies.
Objective: To investigate whether plasma Klotho participated in kidney-brain crosstalk in AD.
Background: The dysregulation of lipid metabolism plays an important role in the pathogenesis of Alzheimer's disease (AD). Liver-type fatty acid-binding protein (L-FABP, also known as FABP1) is critical for fatty acid transport and may be involved in AD.
Objective: To investigate whether the FABP1 level is altered in patients with AD, and its associations with levels of amyloid-β (Aβ) and tau in the plasma and cerebrospinal fluid (CSF).
Angiostatin, an endogenous angiogenesis inhibitor generated by the proteolytic cleavage of plasminogen, was recently reported to contribute to the development of Alzheimer's disease (AD). However, whether there are pathological changes in angiostatin levels in individuals with AD dementia is unclear, and whether plasma angiostatin has a relationship with major AD pathological processes and cognitive impairment remains unknown. To examine plasma angiostatin levels in patients with AD dementia and investigate the associations of angiostatin with blood and cerebrospinal fluid (CSF) AD biomarkers, we conducted a cross-sectional study including 35 cognitively normal control (CN) subjects and 59 PiB-PET-positive AD dementia patients.
View Article and Find Full Text PDF