Charge localization of memory materials plays a crucial role in the endurance and retention ability of organic nonvolatile memory, which is completely opposite from the charge delocalization of high-mobility materials. However, charge transfer of both though-space and through-bond based on molecular design principles still faces challenges. Herein, a nonplanar wide-bandgap semiconductor with C-hindrance (DOCH-DDPA-SFX) has been designed and synthesized.
View Article and Find Full Text PDFBackground: Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)-based tumor heterogeneity in assessing ALN metastasis in BC is unclear.
Purpose: To assess the value of deep learning (DL)-derived kinetic heterogeneity parameters based on BC dynamic contrast-enhanced (DCE)-MRI to infer the ALN status.
The poor conductivities and instabilities of accessible nickel oxyhydroxides hinder their use as oxygen evolution reaction (OER) electrocatalysts. Herein, we constructed Fe-NiOOH-O-600, an Fe-doped nickel oxide hydroxide with abundant oxygen vacancies supported on nickel foam (NF), using a hydrothermal method and an electrochemical activation strategy involving 600 cycles of cyclic voltammetry, assisted by the precipitation/dissolution equilibrium of ferrous sulfide (FeS) in the electrolyte. This two-step method endows the catalyst with abundant Fe-containing active sites while maintaining the ordered structure of nickel oxide hydroxide (NiOOH).
View Article and Find Full Text PDF