Segregation of rare earth alloying elements are known to segregate to grain boundaries in Mg and suppress grain boundary sliding via strong chemical bonds. Segregation of Mn, however, has recently been found to enhance grain boundary sliding in Mg, thereby boosting its ductility. Taking the Mg (2¯114) twin boundary as an example, we performed a first-principles comparative study on the segregation and chemical bonding of Y, Zn, and Mn at this boundary.
View Article and Find Full Text PDFVacancy diffusion is fundamental to materials science. Hydrogen atoms bind strongly to vacancies and are often believed to retard vacancy diffusion. Here, we use a potential-of-mean-force method to study the diffusion of vacancies in Cu and Pd.
View Article and Find Full Text PDFThe workability and ductility of metals usually degrade with exposure to irradiation, hence the phrase "radiation damage". Here, we found that helium (He) radiation can actually enhance the room-temperature deformability of submicron-sized copper. In particular, Cu single crystals with diameter of 100-300 nm and containing numerous pressurized sub-10 nm He bubbles become stronger, more stable in plastic flow and ductile in tension, compared to fully dense samples of the same dimensions that tend to display plastic instability (strain bursts).
View Article and Find Full Text PDF