Publications by authors named "Jun-Lun Meng"

The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.

View Article and Find Full Text PDF

Sensitive quantification of methoxy poly(ethylene glycol) (mPEG)-conjugated therapeutics for pharmacokinetic determination is critical for mPEGylated drug development. However, sensitive measurement of low-molecular-weight (lmw) mPEG compounds remains challenging due to epitope competition between backbone-specific anti-PEG antibodies. Here, we engineered a high-affinity methoxy-specific anti-mPEG antibody for sensitive quantification of free mPEG molecules and mPEGylated therapeutics.

View Article and Find Full Text PDF

High levels of dissolved arsenic (As) have been reported in many rivers running though the Tibetan Plateau (TP), the "Water Tower of Asia". However, the source, spatiotemporal variations, and geochemical behavior of dissolved As in these rivers remain poorly understood. In this study, hot spring, river water, and suspended particulate material samples collected from the Yarlung Tsangpo River (YTR) (upper reaches of the Brahmaputra River) system in 2017 and 2018 were analyzed.

View Article and Find Full Text PDF