Publications by authors named "Jun-Kyu Seo"

A tunable channel selector operating over both the C and L bands of wavelength-division-multiplexing optical network is proposed based on a thermo-optic tunable Bragg grating device in a polymer waveguide. A tilted Bragg grating cascaded with an asymmetric Y-branch waveguide effectively implements a small Bragg-reflection wavelength filter that does not require an external circulator. To increase the operating wavelength span of the channel selector, two Bragg gratings with different periods are fabricated on a single substrate for covering C and L bands, respectively.

View Article and Find Full Text PDF

We report the transmission capability of a tunable external cavity laser (T-ECL) that utilizes a super-luminescent diode (SLD) and a polymer Bragg reflector (PBR) operating with a direct modulation of 2.5 Gb/s for a light source of a long-reach wavelength division multiplexed-passive optical net- work (WDM-PON). The T-ECL successfully operated at an ambient temperature of -20 °C to 70 °C when employing a cooled SLD.

View Article and Find Full Text PDF

Highly integrated optical components are strongly demanded because they enable wavelength-division multiplexing optical communication systems to achieve smaller footprints, lower power consumption, and enhanced reliability. Variable optical attenuator (VOA) arrays are often used with optical switches in cascaded form for reconfigurable optical add-drop multiplexer systems. Although VOAs and optical switches based on polymer waveguide technology are commercially available, it is still not viable to integrate these two array devices on a single chip because of significant interchannel crosstalk.

View Article and Find Full Text PDF

We demonstrate a directly-modulated 10-Gb/s tunable external cavity laser (ECL) fabricated by using a polymer Bragg reflector and a high-speed superluminescent diode (SLD). The tuning range and output power of this ECL are measured to be >11 nm and 2.6 mW (@ 100 mA), respectively.

View Article and Find Full Text PDF

A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated.

View Article and Find Full Text PDF