Publications by authors named "Jun-Jun Chang"

Growth patterns of aquatic macrophytes have been shown to vary in response to hydrological properties; however, such properties are typically characterized by water level fluctuation, flow velocity, flooding season, and sedimentation, but not by water exchange rate (WER). Herein, we experimentally investigated how WER (three levels: exchange 0%, 20%, and 40% of total water per day) affects water and sediment properties, and the consequences that these variations have on the individual responses of two submerged macrophytes, and which were planted in two different sediment types (sand and clay). In the experiment without ramets, it was found that turbidity, pH value, and dissolved carbon dioxide concentration of the system water were statistically unaffected by WER, while water dissolved oxygen (DO) concentration and sediment oxidation-reduction potential (ORP, in both sediments) consistently increased with increasing WER, regardless of experimental time.

View Article and Find Full Text PDF

The start-up of the anaerobic ammonium oxidation (anammox) process in three up-flow column reactors seeded with common mixed activated sludge and added with three materials, sponge (R1), sponge + volcanic rock (R2) and sponge + charcoal (R3), as carriers for biofilm formation were comparatively investigated in this study. The supplement of volcanic rock and charcoal could significantly shorten the start-up time of the anammox process, which primarily occurred in the activity-enhanced phase, with ammonium and nitrite removal efficiencies stabilized above 92.5% and 93.

View Article and Find Full Text PDF

Microbial processes play a vital important role in the removal of contaminants in constructed wetland (CW). However, the microbial physiology and community structure can be influenced by environmental conditions. In this study, four pilot-scale integrated vertical-flow constructed wetlands (IVCWs) were employed to treat domestic and nitrified wastewaters.

View Article and Find Full Text PDF

In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.

View Article and Find Full Text PDF