Publications by authors named "Jun-Jae Chung"

Mesangial cells are stromal cells that are important for kidney glomerular homeostasis and the glomerular response to injury. A growing body of evidence demonstrates that mesenchymal stromal cells, such as stromal fibroblasts, pericytes and vascular smooth muscle cells, not only specify the architecture of tissues but also regulate developmental processes, vascularization and cell fate specification. In addition, through crosstalk with neighbouring cells and indirectly through the remodelling of the matrix, stromal cells can regulate a variety of processes such as immunity, inflammation, regeneration and in the context of maladaptive responses - fibrosis.

View Article and Find Full Text PDF

The kidney glomerulus is essential for proper kidney function. Until recently, technical challenges associated with glomerular isolation and subsequent dissolution into single cells have limited the detailed characterization of cells in the glomerulus. Previous techniques of kidney dissociation result in low glomerular cell yield, which limits high-throughput analysis.

View Article and Find Full Text PDF

Background: The glomerulus is a specialized capillary bed that is involved in urine production and BP control. Glomerular injury is a major cause of CKD, which is epidemic and without therapeutic options. Single-cell transcriptomics has radically improved our ability to characterize complex organs, such as the kidney.

View Article and Find Full Text PDF

The efficacy of B cell depletion therapies in diseases such as nephrotic syndrome and rheumatoid arthritis suggests a broader role in B cells in human disease than previously recognized. In some of these diseases, such as the minimal change disease subtype of nephrotic syndrome, pathogenic antibodies and immune complexes are not involved. We hypothesized that B cells, activated in the kidney, might produce cytokines capable of directly inducing cell injury and proteinuria.

View Article and Find Full Text PDF

Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder.

View Article and Find Full Text PDF

The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D) and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis.

View Article and Find Full Text PDF

Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo.

View Article and Find Full Text PDF

During the past several decades, the incidence of obesity has significantly increased worldwide. Enormous efforts have been devoted to understanding the molecular mechanisms underlying obesity and its related metabolic disorders such as type 2 diabetes, cardiovascular disease, atherosclerosis, and hypertension. It is now well-established that altered adipocyte metabolism in obese patients is closely associated with the induction of various metabolic stresses including hyperglycemia, hyperlipidemia, hyperinsulinemia, and chronic inflammation.

View Article and Find Full Text PDF

Liver X receptor (LXR)alpha and LXRbeta play important roles in fatty acid metabolism and cholesterol homeostasis. Although the functional roles of LXR in the liver, intestine, fat, and macrophages are well established, its role in pancreatic beta-cells has not been clearly defined. In this study, we revealed that chronic activation of LXR contributes to lipotoxicity-induced beta-cell dysfunction.

View Article and Find Full Text PDF

Adiponectin has recently received a great deal of attention due to its beneficial effects on insulin resistance and metabolic disorders. One of the mechanisms through which adiponectin exerts such effects involves an increase in fatty acid oxidation in muscle and liver. In the present study, we demonstrate that 5'-AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) are involved in the activation of peroxisome proliferator-activated receptor (PPAR)alpha by adiponectin in muscle cells.

View Article and Find Full Text PDF

Specific cell type differentiation is driven by programmed regulation of gene expression, which is the result of coordinated modulation of the transcription machinery and chromatin-remodeling factors. We present evidence here that the down-regulation of histone deacetylases is an important process during adipocyte differentiation. In 3T3-L1 cells, histone hyperacetylation was selectively induced at the promoter regions of adipogenic genes during adipocyte differentiation.

View Article and Find Full Text PDF