Publications by authors named "Jun-Ichiro Yomoda"

Despite advances in the treatment of rheumatoid arthritis (RA), currently approved medications can have significant side effects due to their direct immunosuppressive activities. Additionally, current therapies do not address residual synovial inflammation. In this study, we evaluated the role of integrin α9 and its ligand, tenascin-C (Tn-C), on the proliferative and inflammatory response of fibroblast-like synoviocytes (FLSs) from RA patients grown in three-dimensional (3D)-micromass culture.

View Article and Find Full Text PDF

Severe combined immunodeficiency (SCID) mice, the most widely used animal model of DNA-PKcs (Prkdc) deficiency, have contributed enormously to our understanding of immunodeficiency, lymphocyte development, and DNA-repair mechanisms, and they are ideal hosts for allogeneic and xenogeneic tissue transplantation. Here, we use zinc-finger nucleases to generate rats that lack either the Prkdc gene (SCID) or the Prkdc and Il2rg genes (referred to as F344-scid gamma [FSG] rats). SCID rats show several phenotypic differences from SCID mice, including growth retardation, premature senescence, and a more severe immunodeficiency without "leaky" phenotypes.

View Article and Find Full Text PDF

SR proteins are non-snRNP splicing factors harbouring a domain rich in Arg-Ser repeats, which are extensively phosphorylated by several kinases. We performed a comparative study of different SR kinases, including SRPK, Clk, PRP4 and DYRK, and found that only Clks efficiently altered 5' splice site selection of Adenovirus E1A. The phosphorylation state of SR proteins was examined using a phospho-SR specific antibody mAb1H4 and a 75 kDa protein was most evidently hyperphosphorylated by Clks.

View Article and Find Full Text PDF

The regulation of splice site usage provides a versatile mechanism for controlling gene expression and for the generation of proteome diversity, playing an essential role in many biological processes. The importance of alternative splicing is further illustrated by the increasing number of human diseases that have been attributed to mis-splicing events. Appropriate spatial and temporal generation of splicing variants demands that alternative splicing be subjected to extensive regulation, similar to transcriptional control.

View Article and Find Full Text PDF