The receptor for advanced glycation end products (RAGE) is a multi-ligand cell surface receptor and a member of the immunoglobulin superfamily. RAGE is involved in a wide range of inflammatory, degenerative and hyper-proliferative disorders which span over different organs by engaging diverse ligands, including advanced glycation end products, S100 family proteins, high-mobility group protein B1 (HMGB1) and amyloid β. We previously demonstrated that the cytoplasmic domain of RAGE is phosphorylated upon the binding of ligands, enabling the recruitment of two distinct pairs of adaptor proteins, Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) and myeloid differentiation protein 88 (MyD88).
View Article and Find Full Text PDFAccumulating evidence indicates that dysfunction of mitochondria is a common feature of Parkinson disease. Functional loss of a familial Parkinson disease-linked gene, BRPK/PINK1 (PINK1), results in deterioration of mitochondrial functions and eventual neuronal cell death. A mitochondrial chaperone protein has been shown to be a substrate of PINK1 kinase activity.
View Article and Find Full Text PDFWe previously revealed a novel signal pathway involving S100A11 for inhibition of the growth of normal human keratinocytes (NHK) caused by high Ca(++) or transforming growth factor beta. Exposure to either agent resulted in transfer of S100A11 to nuclei, where it induced p21(WAF1). In contrast, S100A11 has been shown to be overexpressed in many human cancers.
View Article and Find Full Text PDFRegulation of cell growth and apoptosis is one of the pleiotropic functions of annexin A1 (ANXA1). Although previous reports on the overexpression of ANXA1 in many human cancers and on growth suppression and/or induction of apoptosis by ANXA1 may indicate the tumor-suppressive nature of ANXA1, molecular mechanisms of the function of ANXA1 remain largely unknown. Here we provide evidence that ANXA1 mechanistically links the epidermal growth factor-triggered growth signal pathway with cytosolic phospholipase A(2) (cPLA(2)), an initiator enzyme of the arachidonic acid cascade, through interaction with S100A11 in normal human keratinocytes (NHK).
View Article and Find Full Text PDF