Publications by authors named "Jun-Ichi Sumitani"

Using soil samples, we screened for microbes that produce biogenic manganese oxides (BMOs) and isolated Mn(II)-oxidizing fungus, namely Pleosporales sp. Mn1 (Mn1). We purified the Mn(II)-oxidizing enzyme from intracellular extracts of Mn1.

View Article and Find Full Text PDF

Various carbohydrate-active enzymes in Aspergillus are produced in response to physiological inducers, which is regulated at the transcriptional level. To elucidate the induction mechanisms in Aspergillus, we screened for new regulators involved in cellulose-responsive induction from approximately 10,000 Aspergillus aculeatus T-DNA-inserted mutants. We constructed the T-DNA-inserted mutant library using the host strain harboring the orotidine 5'-monophosphate decarboxylase gene (pyrG) under the control of the FIII-avicelase gene (cbhI) promoter.

View Article and Find Full Text PDF

To characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination.

View Article and Find Full Text PDF

The GH10 xylanase XYNIII is expressed in the hyper-cellulase-producing mutant PC-3-7, but not in the standard strain QM9414 of Trichoderma reesei. The GH11 xylanase gene xyn1 is induced by cellulosic and xylanosic carbon sources while xyn3 is induced only by cellulosic carbon sources in the PC-3-7 strain. In this study, we constructed a modified xyn3 promoter in which we replaced the cis-acting region of the xyn3 promoter by the cis-acting region of the xyn1 promoter.

View Article and Find Full Text PDF

We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A.

View Article and Find Full Text PDF

Aspergillus aculeatus β-glucosidase 1 (AaBGL1) is one of the best cellobiose hydrolytic enzymes without transglycosylation products, among β-glucosidase from various origins, for use in cellulosic biomass conversion with Trichoderma cellulases. However, in our previous report, it was demonstrated that AaBGL1 has lower catalytic efficiency toward cellobiose, which is a major end product from cellulosic biomasses by Trichoderma reesei cellulases, than do gentiobiose and laminaribiose. Thus, we expected that there is room to enhance cellobiose hydrolytic activity of AaBGL1 by increasing catalytic efficiency (k /K ) up to that of gentiobiose or laminaribiose for accelerating the saccharification of cellulosic biomasses, and we performed site-saturation mutagenesis targeting nine amino acids supposed to constitute subsite +1 of AaBGL1.

View Article and Find Full Text PDF

The ability of the Trichoderma reesei X3AB1strain enzyme preparations to convert cellulosic biomass into fermentable sugars is enhanced by the replacement of xyn3 by Aspergillus aculeatus β-glucosidase 1 gene (aabg1), as shown in our previous study. However, subsequent experiments using T. reesei extracts supplemented with the glycoside hydrolase (GH) family 10 xylanase III (XYN III) and GH Family 11 XYN II showed increased conversion of alkaline treated cellulosic biomass, which is rich in xylan, underscoring the importance of XYN III.

View Article and Find Full Text PDF

β-glucosidase 1 (AaBGL1), which promotes cellulose hydrolysis by cellulase system, was characterized and compared some properties to a commercially supplied orthologue in (AnBGL) to elucidate advantages of recombinant AaBGL1 (rAaBGL1) for synergistic effect on enzymes. Steady-state kinetic studies revealed that rAaBGL1 showed high catalytic efficiency towards β-linked glucooligosaccharides. Up to a degree of polymerization (DP) 3, rAaBGL1 prefered to hydrolyze β-1,3 linked glucooligosaccharides, but longer than DP 3, preferred β-1,4 glucooligosaccharides (up to DP 5).

View Article and Find Full Text PDF

A maltotriose-forming amylase (G3Amy) from Kitasatospora sp. MK-1785 was successfully isolated from a soil sample by inhibiting typical extracellular α-amylases using a proteinaceous α-amylase inhibitor. G3Amy was purified from the MK-1785 culture supernatant and characterized.

View Article and Find Full Text PDF

ClbR is a Zn(II)2Cys6 transcriptional activator that controls the expression of cellulase-related genes in response to Avicel and cellobiose in Aspergillus aculeatus. A clbR-overexpressing strain (clbR-OE) that expresses the clbR gene at levels sevenfold higher than the control strain sustainably produced xylanolytic and cellulolytic activities during 10-day cultivation of A. aculeatus, enabling synchronization of xylanolytic and cellulolytic activities at a maximum level.

View Article and Find Full Text PDF

GH3 (glycoside hydrolase family 3) BGLs (β-glucosidases) from filamentous fungi have been widely and commercially used for the supplementation of cellulases. AaBGL1 (Aspergillus aculeatus BGL1) belongs to the GH3 and shows high activity towards cellooligosaccharides up to high degree of polymerization. In the present study we determined the crystal structure of AaBGL1.

View Article and Find Full Text PDF

Auxotrophic mutants of Aspergillus can be isolated in the presence of counter-selective compounds, but the process is laborious. We developed a method to enable reversible impairment of the ku80 gene (Aaku80) in the imperfect fungus Aspergillus aculeatus. Aaku80 was replaced with a selection marker, orotidine 5'-phosphate decarboxylase (pyrG), followed by excision of pyrG between direct repeats (DR) to yield the Aaku80 deletion mutant (MR12).

View Article and Find Full Text PDF

Although the capabilities of Trichoderma reesei cellulases have been greatly improved, these enzymes are still too costly for commercial use. The aim of this research was to assess the biomass saccharification capability of JN11, a recombinant cellulase, compared with that of the commercially available cellulases Accellerase 1500 and Cellic CTec. The activities of JN11, Accellerase 1500, and Cellic CTec were compared by using various types of cellulosic biomass, including rice straw, Erianthus, eucalyptus, and Japanese cedar.

View Article and Find Full Text PDF

The cellobiose- and cellulose-responsive induction of the FIII-avicelase (cbhI), FII-carboxymethyl cellulase (cmc2), and FIa-xylanase (xynIa) genes is not regulated by XlnR in Aspergillus aculeatus, which suggests that this fungus possesses an unknown cellulase gene-activating pathway. To identify the regulatory factors involved in this pathway, we constructed a random insertional mutagenesis library using Agrobacterium tumefaciens-mediated transformation of A. aculeatus NCP2, which harbors a transcriptional fusion between the cbhI promoter (P ( CBHI )) and the orotidine 5'-phosphate decarboxylase gene (pyrG).

View Article and Find Full Text PDF

The expression levels of the cellulase and xylanase genes between the host strain and an xlnR disruptant were compared by quantitative RT-PCR (qPCR) to identify the genes controlled by XlnR-independent signaling pathway. The cellulose induction of the FI-carboxymethyl cellulase (cmc1) and FIb-xylanase (xynIb) genes was controlled by XlnR; in contrast, the cellulose induction of the FIII-avicelase (cbhI), FII-carboxymethyl cellulase (cmc2), and FIa-xylanase (xynIa) genes was controlled by an XlnR-independent signaling pathway. To gain deeper insight into the XlnR-independent signaling pathway, the expression profile of cbhI was analyzed as a representative target gene.

View Article and Find Full Text PDF

Agrobacterium tumefaciens-mediated transformation (AMT) was applied to Aspergillus aculeatus. Transformants carrying the T-DNA from a binary vector pBIG2RHPH2 were sufficiently mitotically stable to allow functional genomic analyses. The AMT technique was optimized by altering the concentration of acetosyringone, the ratio and concentration of A.

View Article and Find Full Text PDF

The tandem starch-binding domains (KvSBD) located at carboxy-terminal region of halophilic α-amylase from moderate halophile, Kocuria varians, were expressed in E. coli with amino-terminal hexa-His-tag and purified to homogeneity. The recombinant KvSBD showed binding activity to raw starch granules at low to high salt concentrations.

View Article and Find Full Text PDF

To develop a Trichoderma reesei strain appropriate for the saccharification of pretreated cellulosic biomass, a recombinant T. reesei strain, X3AB1, was constructed that expressed an Aspergillus aculeatus β-glucosidase 1 with high specific activity under the control of the xyn3 promoter. The culture supernatant from T.

View Article and Find Full Text PDF

A homologous transformation system was developed using the endogenous ATP-sulfurylase gene, AasC, as a selectable marker in Aspergillus aculeatus. Spontaneous mutation was proved to be beneficial in isolating AasC-deficient mutants. Molecular analysis of sC(+) transformants revealed that the frequency of single copy integration at ATP-sulfurylase locus was more than 40%.

View Article and Find Full Text PDF

FI-Carboxymethylcellulase (cmc1; family 12) is one of the endoglucanases of Aspergillus aculeatus and consists of single polypeptide chain of 221 amino acids. The cmc1 gene was expressed in Aspergillus oryzae niaD300 (niaD-) under promoter 8142. The plasmid pCMG14 carrying the cmc1 gene at PstI site was used as a source of the gene (920 bp) and Aspergillus oryzae was successfully transformed by the plasmid pNAN-cmc1 (harboring cmc1 gene).

View Article and Find Full Text PDF

Fructosyl-amino acid oxidase (FOD-F) from Fusarium oxysporum f. sp. raphani (NBRC 9972) is the enzyme catalyzing the oxidative deglycation of fructosyl-amino acids such as N(epsilon)-fructosyl N(alpha)-benzyloxycarbonyl-lysine (FZK) and fructosyl valine (FV), which are model compounds of the glycated proteins in blood.

View Article and Find Full Text PDF

We showed by random mutagenesis that one-amino-acid substitution at Arg94 in fructosyl-amino acid oxidase from Ulocladium sp. JS-103 enhanced substrate specificity toward fructosyl valine (FV), a model compound of hemoglobin A(1c). Kinetic analysis showed that the specificity of the R94W mutant enzyme toward FV was 14-fold that of the wild-type enzyme.

View Article and Find Full Text PDF

A gene encoding exoglucanase (CBHII) of Streptomyces sp. M 23 was cloned and sequenced. The cbhII gene consisted of 1359 bp capable of encoding a polypeptide of 453 amino acids with a calculated molecular mass of 45,175 Da.

View Article and Find Full Text PDF

To express the cbhI gene, encoding Aspergillus aculeatus cellobiohydrolase I (CBHI), in Aspergillus oryzae, a plasmid was constructed. The strain that displayed the strongest CBHI activity among the transformants produced about 941 mg/l in liquid culture. It was confirmed by a PCR method that the plasmid was integrated at the niaD locus.

View Article and Find Full Text PDF