Publications by authors named "Jun-Ichi Funahashi"

Article Synopsis
  • HMM is a lethal genetic mutation in Japanese quail that leads to severe limb malformations, characterized by polydactyly and abnormal digit development.
  • The limb buds of affected embryos exhibit a significant decrease in sonic hedgehog (SHH) signaling, with a lack of polarizing activity and dysfunctional response to normal SHH signals.
  • High levels of GLI3A protein and nuclear localization of GLI3 indicate that the regulatory mechanism of GLI3 is disrupted, suggesting a unique genetic cause of these limb abnormalities.
View Article and Find Full Text PDF

PPM1L, a member of the metal-dependent protein phosphatase (PPM) family, is involved in regulating the stress-activated protein kinase pathway and ceramide trafficking. However, the physiological function of PPM1L in the brain is unclear. In this study, we generated and analyzed ppm1l-deficient mice in order to investigate PPM1L functions in the brain.

View Article and Find Full Text PDF

The chick optic tectum consists of 16 laminae. Here, we report contribution of En2 to laminar formation in chick optic tecta. En2 is specifically expressed in laminae g-j of stratum griseum et fibrosum superficiale (SGFS).

View Article and Find Full Text PDF

We have developed a system for imaging whole chick embryos from embryonic day 1.5 (E1.5) to E4.

View Article and Find Full Text PDF

Semicircular canals are sensory organs for balance, consisting of fluid-filled tubules that are arranged perpendicularly to each other in inner ear. The precise mechanism of the morphogenesis of this unique organ is still under investigation. Semicircular canals arise from the flattened pouch of epithelium.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are known to play roles in inner ear development of higher vertebrates. In zebrafish, there are several reports showing that members of the BMP family are expressed in the otic vesicle. We have isolated a novel zebrafish mutant gallery, which affects the development of the semicircular canal.

View Article and Find Full Text PDF

To identify spinal motor neuron subtype-specific transcripts, we employed a single cell subtractive screen of mRNAs in chick embryos. We cloned a differentially expressed gene that termed spinal cord G-protein-coupled receptor 1 (SCGPR1) from its expression pattern that change dynamically in the developing spinal cord. The vertebrate orthologue of SCGPR1 is termed Gpr37 (GPCR/CNS1, ET(B)R-LP-1, Pael-R), however the specific ligand of this receptor has not been identified.

View Article and Find Full Text PDF

During vertebrate inner ear development, compartmentalization of the auditory and vestibular apparatuses along two axes depends on the patterning of transcription factors expressed in a region-specific manner. Although most of the patterning is regulated by extrinsic signals, it is not known how Nkx5.1 and Msx1 are patterned.

View Article and Find Full Text PDF

The boundary of gene expression of transcription factors often plays a role in making a signaling center in development. In the otic vesicle, Gbx2 is expressed in the dorso-medial region including the endolymphatic duct, and Otx2 in the ventral region. Fgf10 is expressed between their expression boundaries, and the cochleovestibular ganglion develops close to the medial side of the Fgf10 expressing domain.

View Article and Find Full Text PDF

It remained very difficult to manipulate gene expression in chick embryos until the advent of in ovo electroporation which enabled the induction of both gain-of-function, and recently loss-of-function, of a gene of interest at a specific developmental stage. Gain-of-function by electroporation is so effective that it has become widely adopted in developmental studies in the chick. Recently, it became possible to induce loss-of-function by introducing an siRNA expression vector by electroporation.

View Article and Find Full Text PDF

Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia, branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected.

View Article and Find Full Text PDF