Publications by authors named "Jun-Hui Park"

Single-entity electrochemistry has gained significant attention for the analysis of individual cells, nanoparticles, and droplets, which is leveraged by robust electrochemical techniques such as chronoamperometry and cyclic voltammetry (CV) to extract information about single entities, including size, kinetics, mass transport, etc. For an in-depth understanding such as dynamic interaction between the electrode and a single entity, the unconventional fast electrochemical technique is essential for time-resolved analysis. This fast experimental technique is unfortunately hindered by a substantial nonfaradaic response.

View Article and Find Full Text PDF

We report a novel detection method for single aqueous droplets in organic solvents by the collisional contact of the droplet, inducing the partial deformation of the ultramicroelectrode (UME) surface. For various chemical reactions in organic solvents, water impurities affect the catalytic activity, leading to a loss of productivity and selectivity. Therefore, it is necessary to monitor the water content of organic solvents in real time between many chemical production processes, from the laboratory to the industrial scale.

View Article and Find Full Text PDF

Single-entity electrochemistry, which employs electrolysis during the collision of single particles on ultramicroelectrodes, has witnessed significant advancements in recent years, enabling the observation and characterization of individual particles. Information on a single aqueous droplet (e.g.

View Article and Find Full Text PDF

The Pivot Mandu is an innovative device featuring a leak-tight adjustable 3D balloon spacer, incorporating inner mesh support, an outer e-PTFE layer, and a compliant balloon in the middle layer with a specialized detachable system. To assess its feasibility, proof of concept was rigorously evaluated through bench testing and survival porcine animal experiments. The results demonstrated successful remote inflation of the balloon system, with the balloon spacer exhibiting sustained patent and functional integrity over an extended observation period of up to 6 months.

View Article and Find Full Text PDF

Herein, we report our findings on 4-carbazole (CBZ)-appended salen-based indium complexes, CBZIn1 and CBZIn2, which feature diimine bridges exhibiting different electron-accepting properties. Notably, CBZIn2 exhibited a significantly higher photoluminescence quantum efficiency (PLQY, ) in toluene than CBZIn1, with a value over 15 times greater ( = 57.7% for CBZIn2; = 3.

View Article and Find Full Text PDF

Herein, we report the electrochemical monitoring of attoliters of water droplets in an organic medium by the electrolysis of an extracted redox species from the continuous phase upon collisional events on an ultramicroelectrode. To obtain information about a redox-free water droplet in an organic solvent, redox species with certain concentrations need to be contained inside it. The redox species inside the droplet were delivered by a partitioning equilibrium between the organic phase and the water droplets.

View Article and Find Full Text PDF

In this study, we report the new application of single nanodroplet electrochemistry to in situ monitor the interfacial transfer kinetics of electroactive species across liquid/liquid interface. Interfacial kinetic information is crucial in drug delivery and membrane transport. However, interfacial information has been mainly studied thermodynamically, such as partition coefficient, which could not manifest a speed of transfer.

View Article and Find Full Text PDF

We describe a simple method for real-time observation of collision and recollision behavior of a single aqueous attoliter droplet in an organic solvent through single-entity electrochemistry. The dynamics and morphology of the droplet after the collision event at the Au ultramicroelectrode (Au-UME) were monitored by consecutive cyclic voltammetry and amperometric current-time measurements. By sequentially applying oxidative potential and reductive potential at the Au-UME in the presence of attoliter droplets containing reversible redox species (e.

View Article and Find Full Text PDF

Blood tests (e.g., red blood cell (RBC) count) are crucial for detecting, diagnosing, and monitoring the progression of blood disorders.

View Article and Find Full Text PDF

A programmable electrochemical rectifier based on thin-layer electrochemistry is described here. Both the rectification ratio and the response time of the device are programmable by controlling the gap distance of the thin-layer electrochemical cell, which is easily controlled using commercially available beads. One of the electrodes was modified using a ferrocene-terminated self-assembled monolayer to offer unidirectional charge transfers via soluble redox species.

View Article and Find Full Text PDF

We detected single living bacterial cells on ultramicroelectrode (UME) using a single-particle collision method and optical microscopic methods. The number of collision events involving the bacterial cells indicated in current-time (i-t) curves corresponds to the number of bacterial cells (i.e.

View Article and Find Full Text PDF

We have developed a simple and selective method for the electrochemical detection of hydrazine (HZ) using poly(dopamine) (pDA)-modified indium tin oxide (ITO) electrodes. Modification with pDA was easily achieved by submerging the ITO electrode in a DA solution for 30 min. The electrocatalytic oxidation of HZ on the pDA-modified ITO electrode was measured by cyclic voltammetry.

View Article and Find Full Text PDF

An enzyme stimulated deposition of prussian blue onto the gold-coated magnetic microparticles is described. We propose to synthesize the continuous outer gold layer on the magnetic particle for a gold working electrode and its superparamagnetic property. In-depth characterization of the gold shell formation was studied with scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry.

View Article and Find Full Text PDF

We describe the electrochemical detection of single nanoparticle (NP) attachment on a nanoelectrode by the increase in the active electrode area. The attachment of gold NP-decorated single wall carbon nanotubes (Au-SWCNTs) was observed by their current-time transients for ferrocenemethanol (FcMeOH) oxidation. Since the attached Au-SWCNT increases the electroactive area available for FcMeOH oxidation, the current increases after attachment of the particle.

View Article and Find Full Text PDF

We investigate the principle of the open circuit potential (OCP) change upon a particle collision event based on mixed potential theory and confirmed by a mimic experiment in which we studied the changes in the OCP when two different electrodes (Pt and Au) are brought into contact in a solution that contains some irreversible redox couples. A micrometer-sized Au ultramicroelectrode, when connected in parallel to a Pt micro- or nanoelectrode, showed clearly measurable OCP changes whose magnitude matches well with that predicted by a simplified mixed potential theory for a pair of different electrode materials. On the basis of the study, each electrode establishes a different mixed potential involving two or more half reactions that have different heterogeneous electron transfer kinetics at different electrodes and the OCP changes are very sensitive to the relative ratio of the rate constant of the individual half reaction at different materials.

View Article and Find Full Text PDF

Single nanoparticle (NP) collisions were successfully observed by a potentiometric measurement. The open circuit potential (OCP) of a measuring Au ultramicroelectrode (UME) changes when Pt NPs collide with the UME in a hydrazine solution. The OCP change is related to the redox processes, the concentration of particles, particle size, and electrode size.

View Article and Find Full Text PDF

In this paper, we report the microelectrode array fabrication using selective wetting/dewetting of polymers on a chemical pattern which is a simple and convenient method capable of creating negative polymeric replicas using polyethylene glycol (PEG) as a clean and nontoxic sacrificial layer. The fabricated hole-patterned polypropylene film on gold demonstrated enhanced electrochemical properties. The chemical pattern is fabricated by microcontact printing using octadecanethiol (ODT) as an ink on gold substrate.

View Article and Find Full Text PDF

In this paper, we studied charge transfer through a self-assembled monolayer (SAM) of 1-adamantanethiol on gold. Charge transfer through the 1-adamantanethiol SAM depended on the type of anion present when [Fe(CN)6]3- was used as a redox probe. The sluggish charge transfer process was monitored by cyclic voltammetry using the relatively large and hydrophobic perchlorate and hexafluorophosphate ions as the supporting electrolyte.

View Article and Find Full Text PDF

Gold electrode was modified with 3-mercaptopropionic acid (MPA) and further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) then attached the nano-Au to obtain films on which Prussian blue (PB) was electrochemically deposited to afford much wider pH adaptive range, much better electrochemical stability and excellent electrochemical response. The microstructure and electrochemical behavior of Au/MPA/PAMAM/nano-Au/PB electrode were investigated by scanning electron microscopy (SEM) and cyclic voltammetry.

View Article and Find Full Text PDF