Publications by authors named "Jun-Hao Chu"

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure.

View Article and Find Full Text PDF

Combination therapy with pegylated interferon (PEG-IFN) and nucleos(t)ide analogues (NAs) can enhance hepatitis B surface antigen (HBsAg) clearance. However, the specific treatment strategy and the patients who would benefit the most are unclear. Therefore, we assessed the HBsAg loss rate of add-on PEG-IFN and explored the factors associated with HBsAg loss in chronic hepatitis B (CHB) patients.

View Article and Find Full Text PDF

HfO-based films with high compatibility with Si and complementary metal-oxide semiconductors (CMOS) have been widely explored in recent years. In addition to ferroelectricity and antiferroelectricity, flexoelectricity, the coupling between polarization and a strain gradient, is rarely reported in HfO-based films. Here, we demonstrate that the mechanically written out-of-plane domains are obtained in 10 nm HfZr0O (HZO) ferroelectric film at room temperature by generating the stress gradient via the tip of an atomic force microscope.

View Article and Find Full Text PDF

InN superconductivity is very special among III-V semiconductors, as other III-V semiconductors (such as GaAs, GaN, InP, InAs, etc.) usually lack strong covalent bonding and thus seldom show superconductivity at low temperatures. Here, we probe the different superconducting phase transitions in InN highlighted by its microstructure.

View Article and Find Full Text PDF

Memristors have been intensively studied in recent years as promising building blocks for next-generation nonvolatile memory, artificial neural networks and brain-inspired computing systems. However, most memristors cannot simultaneously function in extremely low and high temperatures, limiting their use for many harsh environment applications. Here, we demonstrate that the memristors based on high-Curie temperature ferroelectrics can resolve these issues.

View Article and Find Full Text PDF

Memristors have been extensively studied for synaptic simulation and neuromorphic computation. Instead of focusing on implementing specific synaptic learning rules by carefully engineering external programming parameters, researchers recently have paid more attention to taking advantage of the second-order memristor that is more analogous to biologic synapses and modulated not only by external inputs but also by internal mechanisms. However, experimental evidence is still scarce.

View Article and Find Full Text PDF

The ferromagnetism of the two dimensional (2D) CrGeTe atomic layers with the perpendicular magnetic anisotropy and the Curie temperature 30-50 K has recently been experimentally confirmed. By performing the density-functional theory calculations, we demonstrate that the magnetic properties of bilayer CrGeTe can be flexibly tailored, due to the effective band structure tuning by the external electric field. The electric field induces the semiconductor-metal transition and redistributes charge and spin between the two layers.

View Article and Find Full Text PDF

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts.

View Article and Find Full Text PDF

GeTe is a prototypical compound of a new class of multifunctional materials, i.e., ferroelectric Rashba semiconductors (FRS).

View Article and Find Full Text PDF

Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona4bpm23jldbjggshu5662j257tf8nbh9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once