The burgeoning interest in the field of molecular magnetism is to perceive the high magnetic anisotropy in different geometries of metal complexes and hence to draw a magneto-structural correlation. Despite a handful of examples to exemplify the magnetic anisotropy in various coordination geometries of mononuclear complexes, the magnetic anisotropies for two different coordination geometries are underexplored. Employing an appropriate synthetic strategy utilizing the ligand LH [2,2'-{(1,1')-pyridine2,6-diyl-bis(methaneylylidine)}-bis(azaneylylidine)diphenol] and cobalt halide salts in a 1 : 2 stoichiometric ratio in the presence of triethylamine allowed us to report a new family of dinuclear cobalt complexes [CoII2X(L)(P)(Q)]·S with varying terminal halides [X = Cl, P = CHCN, Q = HO, S = HO (1), X = Br, P = CHCN, Q = HO, S = HO (2), X = I, P = CHCN, and Q = CHCN (3)].
View Article and Find Full Text PDF