Publications by authors named "Jun-Fa Zhu"

Finding highly efficient hydrogen evolution reaction (HER) catalysts is pertinent to the ultimate goal of transformation into a net-zero carbon emission society. The design principles for such HER catalysts lie in the well-known structure-property relationship, which guides the synthesis procedure that creates catalyst with target properties such as catalytic activity. Here we report a general strategy to synthesize 10 kinds of single-atom-doped CoSe-DETA (DETA = diethylenetriamine) nanobelts.

View Article and Find Full Text PDF

Alkaline fuel cells can permit the adoption of platinum group metal-free (PGM-free) catalysts and cheap bipolar plates, thus further lowering the cost. With the exploration of PGM-free hydrogen oxidation reaction (HOR) catalysts, nickel-based compounds have been considered as the most promising HOR catalysts in alkali. Here we report an interfacial engineering through the formation of nickel-vanadium oxide (Ni/V O ) heterostructures to activate Ni for efficient HOR catalysis in alkali.

View Article and Find Full Text PDF

Electrosynthesis of hydrogen peroxide (H O ) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth-abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cobalt diselenide (CoSe ), which creates high-performance catalyst to selectively drive two-electron oxygen reduction toward H O in an acidic electrolyte. The enhancement of the interlayer coupling between CoSe atomic layers offers a favorable surface electronic structure that weakens the critical *OOH adsorption, promoting the energetics for H O production.

View Article and Find Full Text PDF

Operating fuel cells in alkaline environments permits the use of platinum-group-metal-free (PGM-free) catalysts and inexpensive bipolar plates, leading to significant cost reduction. Of the PGM-free catalysts explored, however, only a few nickel-based materials are active for catalyzing the hydrogen oxidation reaction (HOR) in alkali; moreover, these catalysts deactivate rapidly at high anode potentials owing to nickel hydroxide formation. Here we describe that a nickel-tungsten-copper (NiWCu) ternary alloy showing HOR activity rivals Pt/C benchmark in alkaline electrolyte.

View Article and Find Full Text PDF

Although the Turing structures, or stationary reaction-diffusion patterns, have received increasing attention in biology and chemistry, making such unusual patterns on inorganic solids is fundamentally challenging. We report a simple cation exchange approach to produce Turing-type Ag Se on CoSe nanobelts relied on diffusion-driven instability. The resultant Turing-type Ag Se-CoSe material is highly effective to catalyze the oxygen evolution reaction (OER) in alkaline electrolytes with an 84.

View Article and Find Full Text PDF

Hydroxide exchange membrane fuel cells offer possibility of adopting platinum-group-metal-free catalysts to negotiate sluggish oxygen reduction reaction. Unfortunately, the ultrafast hydrogen oxidation reaction (HOR) on platinum decreases at least two orders of magnitude by switching the electrolytes from acid to base, causing high platinum-group-metal loadings. Here we show that a nickel-molybdenum nanoalloy with tetragonal MoNi phase can catalyze the HOR efficiently in alkaline electrolytes.

View Article and Find Full Text PDF

Selective and efficient catalytic conversion of carbon dioxide (CO) into value-added fuels and feedstocks provides an ideal avenue to high-density renewable energy storage. An impediment to enabling deep CO reduction to oxygenates and hydrocarbons (e.g.

View Article and Find Full Text PDF

A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO to CO or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids).

View Article and Find Full Text PDF

Many platinum group metal-free inorganic catalysts have demonstrated high intrinsic activity for diverse important electrode reactions, but their practical use often suffers from undesirable structural degradation and hence poor stability, especially in acidic media. We report here an alkali-heating synthesis to achieve phase-mixed cobalt diselenide material with nearly homogeneous distribution of cubic and orthorhombic phases. Using water electroreduction as a model reaction, we observe that the phase-mixed cobalt diselenide reaches the current density of 10 milliamperes per square centimeter at overpotential of mere 124 millivolts in acidic electrolyte.

View Article and Find Full Text PDF

Material interfaces permit electron transfer that modulates the electronic structure and surface properties of catalysts, leading to radically enhanced rates for many important reactions. Unlike conventional thoughts, the nanoscale interfacial interactions have been recently envisioned to be able to affect the reactivity of catalysts far from the interface. However, demonstration of such unlocalized alterations in existing interfacial materials is rare, impeding the development of new catalysts.

View Article and Find Full Text PDF

Solid acid catalysts (SACs) have attracted continuous research interest in past years as they play a pivotal role in establishing environmentally friendly and sustainable catalytic processes for various chemical industries. Development of low-cost and efficient SACs applicable to different catalysis processes are of immense significance but still very challenging so far. Here, we report a new kind of SACs consisting of sulfonated carbon nanofibers that are prepared via incomplete carbonization of low-cost natural nanofibrous cellulose followed by sulphonation with sulfuric acid.

View Article and Find Full Text PDF

The anode oxygen evolution reaction (OER) is known to largely limit the efficiency of electrolyzers owing to its sluggish kinetics. While crystalline metal oxides are promising as OER catalysts, their amorphous phases also show high activities. Efforts to produce amorphous metal oxides have progressed slowly, and how an amorphous structure benefits the catalytic performances remains elusive.

View Article and Find Full Text PDF

The incorporation of defects, such as vacancies, into functional materials could substantially tailor their intrinsic properties. Progress in vacancy chemistry has enabled advances in many technological applications, but creating new type of vacancies in existing material system remains a big challenge. We show here that ionized nitrogen plasma can break bonds of iron-carbon-nitrogen-nickel units in nickel-iron Prussian blue analogues, forming unconventional carbon-nitrogen vacancies.

View Article and Find Full Text PDF

Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni Co P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni Co P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) MIL-88A hexagonal microrods as a new photocatalyst show an active performance for methylene blue (MB) dye decolorization using visible light. MB decolorization over the MIL-88A photocatalyst follows first-order kinetics. The addition of a H2O2 electron acceptor can markedly enhance the photocatalytic MB decoloration performance of MIL-88A.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are a new generation of porous materials constructed from light elements linked by strong covalent bonds. Herein we present rapid preparation of highly fluorescent nanoparticles of a new type of COF, i.e.

View Article and Find Full Text PDF

The g-C(3)N(4)-ZnO composite photocatalysts with various weight percents of ZnO were synthsized by a simple calcination process. The photocatalysts were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The PXRD and HR-TEM results show that the composite materials consist of hexagonal wurzite phase ZnO and g-C(3)N(4).

View Article and Find Full Text PDF

Flowerlike α-Fe(2)O(3) nanostructures were synthesized via a template-free microwave-assisted solvothermal method. All chemicals used were low-cost compounds and environmentally benign. These flowerlike α-Fe(2)O(3) nanostructures had high surface area and abundant hydroxyl on their surface.

View Article and Find Full Text PDF

Metal-organic framework nanotubes (MOFNTs) are achieved by a strategy in which MOF nanorods formed initially act as a self-sacrificing template for the formation of the final MOFNTs. The fluorescent MOFNTs obtained exhibit high sensitivity, significant selectivity, and a fast response rate for the reversible vapor-phase detection of nitroaromatic explosives.

View Article and Find Full Text PDF

The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e.

View Article and Find Full Text PDF

The photocatalytic decolorization of methylene blue dye in aqueous solution using a novel photocatalyst MIL-53(Fe) metal-organic frameworks was investigated under UV-vis light and visible light irradiation. The effect of electron acceptor H(2)O(2), KBrO(3) and (NH(4))(2)S(2)O(8) addition on the photocatalytic performance of MIL-53(Fe) was also evaluated. The results show that MIL-53(Fe) photocatalyst exhibited photocatalytic activity for MB decolorization both under UV-vis light and visible light irradiation, and the MB decolorization over MIL-53(Fe) photocatalyst followed the first-order kinetics.

View Article and Find Full Text PDF

The electronic structure of Eu-intercalated C(70) has been studied by a synchrotron radiation photoemission spectroscopy technique. At low intercalation levels (below the stoichiometry of Eu(3)C(70)), the photoemission data clearly exhibit charge transfer from Eu 6s states to the lowest-unoccupied-molecular-orbital (LUMO) and the LUMO + 1 of C(70). The amount of charge transfer reaches its maximum far before intercalation saturation.

View Article and Find Full Text PDF

A novel type of magnetic porous carbonaceous polymeric material, CTF/Fe(2)O(3) composite (CTF = covalent triazine-based framework), has been synthesized by a facile microwave-enhanced high-temperature ionothermal method. By selecting ZnCl(2) as a reaction medium and the Lewis acid catalyst, and choosing FeCl(3)·6H(2)O as an iron oxide precursor, a series of CTF/Fe(2)O(3) composites with different γ-Fe(2)O(3) contents has been prepared in 60 min. The resulting samples were characterized by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N(2) sorption-desorption isotherms.

View Article and Find Full Text PDF