Proc IEEE Int Symp Biomed Imaging
May 2024
The excessive consumption of marijuana can induce substantial psychological and social consequences. In this investigation, we propose an elucidative framework termed high-order graph attention neural networks (HOGANN) for the classification of Marijuana addiction, coupled with an analysis of localized brain network communities exhibiting abnormal activities among chronic marijuana users. HOGANN integrates dynamic intrinsic functional brain networks, estimated from functional magnetic resonance imaging (fMRI), using graph attentionbased long short-term memory (GAT-LSTM) to capture temporal network dynamics.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is a prevalent health challenge faced by countries worldwide. In this study, we propose a novel large language multimodal models (LLMMs) framework incorporating multimodal data from clinical notes and laboratory results for diabetes risk prediction. We collected five years of electronic health records (EHRs) dating from 2017 to 2021 from a Taiwan hospital database.
View Article and Find Full Text PDF