Circadian arrhythmia has been linked to increased susceptibility to multiple inflammatory diseases, such as sepsis. However, it remains unclear how disruption of the circadian clock modulates molecular aspects of innate immune responses, including inflammasome signaling. Here, we examined the potential role of the circadian clock in inflammasome-mediated responses through myeloid-specific deletion of BMAL1, a master circadian clock regulator.
View Article and Find Full Text PDFAsthmatic airway inflammation is divided into two typical endotypes: Th2-mediated eosinophilic and Th1- or Th17-mediated neutrophilic airway inflammation. The miRNA miR-155 has well-documented roles in the regulation of adaptive T-cell responses and innate immunity. However, no specific cell-intrinsic role has yet been elucidated for miR-155 in T cells in the course of Th2-eosinophilic and Th17-neutrophilic airway inflammation using actual in vivo asthma models.
View Article and Find Full Text PDFAsthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation.
View Article and Find Full Text PDFTissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal.
View Article and Find Full Text PDFHuman rhinovirus (hRV) is the most common cause of asthma exacerbation characterized by clinical and pathophysiological heterogeneity. Steroid-sensitive, Th2 type-eosinophilic asthma has been somewhat studied, but hRV-induced neutrophilic asthma exacerbation is poorly understood. Here, CCR5 was found to play a role in attenuating neutrophilic airway inflammation in hRV-induced asthma exacerbation using chicken ovalbumin (OVA)-based model.
View Article and Find Full Text PDF