Covalent adaptable liquid crystal networks (CALCNs) are highly potential actuating materials due to their actuation properties and shape reprogrammability. Given the importance of network crosslinking state in a CALCN actuator, we sought an all-in-one strategy to probe and visualize its dynamic network while ensuring actuation and reprogramming. Here, tetraphenylethylene derivatives were incorporated into liquid crystal networks via the Diels-Alder (DA) reaction, acting simultaneously as reversible crosslinkers and aggregation-induced emission (AIE) fluorescent probes.
View Article and Find Full Text PDFSoft actuators based on liquid crystal networks (LCNs) have aroused great scientific interest for use as stimuli-controlled shape-changing and moving components for robotic devices due to their fast, large, programmable and solvent-free actuation responses. Recently, various LCN actuators have been implemented in soft robotics using stimulus sources such as heat, light, humidity and chemical reactions. Among them, electrically driven LCN actuators allow easy modulation and programming of the input electrical signals (amplitude, phase, and frequency) as well as stimulation throughout the volume, rendering them promising actuators for practical applications.
View Article and Find Full Text PDFLiquid crystalline network (LCN) actuator normally deforms upon thermally or optically induced order-disorder phase transition, switching once between two shapes (shape 1 in LC phase and shape 2 in isotropic state) for each stimulation on/off cycle. Herein, we report an LCN actuator that deforms from shape 1 to shape 2 and then reverses the deformation direction to form shape 3 on heating or under light only, thus completing the shape switch twice for one stimulation on/off cycle. The deformation reversal capability is obtained with a monolithic LCN actuator whose two sides are made to start deforming at different temperatures and exerting different reversible strains, by means of asymmetrical crosslinking and/or asymmetrical stretching.
View Article and Find Full Text PDFIncreasing resistance to humid environments is a major challenge for the application of γ-CD-K-MOF (a green MOF) in real-world utilisation. γ-CD-K-MOF-HS with enhanced moisture tolerance was obtained by simply treating MOF with HS gas. XPS, Raman and TGA characterizations indicated that the HS molecules coordinated with the metal centers in the framework.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2019
Inspired by animal muscles, we developed a kind of tough elastomers combining high strength and high stretchability with autonomous self-healing capability. A key structural feature is the construction of a double network (DN) connected by the hydrogen bond and host-guest interactions. The first network is the classic elastomer polyacrylate matrix cross-linked by strong hydrogen bonding.
View Article and Find Full Text PDFInspired by the functions of leeches, for the first time homogeneous materials integrating hydrogels and elastomers were achieved by free radical polymerization. 2-Methoxyethyl acrylate (MEA) was used as elastomer monomer and Pluronics functionalized with vinyl groups acted as cross-linkers to impart the hydrogel property to the materials. The resulting Pluronic/PMEA gels possess a swelling ratio of about 210% and good water-retaining ability.
View Article and Find Full Text PDF