Publications by authors named "Jun Terao"

Material photocontrol has gained importance in process engineering and biomedical applications. However, highly photoreactive materials are intrinsically unstable to light, which limits their continuous use in lit environments owing to their gradual deterioration. Herein, synergistically photocontrollable materials in the presence of acid are developed to overcome the conventional trade-off between their photoreactivity and photostability.

View Article and Find Full Text PDF

Artificial molecular motors have been presented as models for biological molecular motors. In contrast to the conventional artificial molecular motors that rely on covalent bond rotation, molecular motors with mechanically interlocked molecules (MIMs) have attracted considerable attention owing to their ability to generate significant rotational motion by dynamically shuttling macrocyclic components. The topology of MIM-type rotational molecular motors is currently limited to catenane structures, which require intricate synthetic procedures that typically produce a low synthetic yield.

View Article and Find Full Text PDF

In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides.

View Article and Find Full Text PDF

2,2'-Bipyridine has been identified as a privileged ligand scaffold for photofunctional transition metal complexes. We herein report on the synthesis and photoproperties of an insulated π-conjugated 2,2'-bipyridine with a linked rotaxane structure consisting of permethylated α-cyclodextrin (PM α-CD) and oligo(-phenylene ethynylene). The insulated π-conjugated 2,2'-bipyridine exhibited enhanced ligand performance in the solid-state emitting biscyclometalated Ir complexes and visible-light-driven Ni catalysts owing to π-extension and remote steric effects based on the linked rotaxane structure.

View Article and Find Full Text PDF

We synthesized an ion pair comprising cationic and anionic Ir(III) photosensitizers ([][]) for photocatalytic CO reduction and showed that the cationic component imparts stability, while the cyclometalating ligands in the anionic component ensure effective visible-light absorption. The triplet excited state of [] is the key photoredox species in this system and is mainly generated through the transfer of triplet excitation energy from the anionic moiety due to Coulombic interactions and appropriate triplet energy alignment between the two ionic components. The positive photosensitization effect of ion pairing was demonstrated by photocatalytic CO reduction in cooperation with a Re(I) molecular catalyst incorporated into a vesicle membrane.

View Article and Find Full Text PDF

Polyacrylate-based network materials are widely used in various products owing to their facile synthesis via radical polymerization reactions. In this study, the effects of alkyl ester chains on the toughness of polyacrylate-based network materials were investigated. Polymer networks were fabricated via the radical polymerization of methyl acrylate (MA), ethyl acrylate (EA), and butyl acrylate (BA) in the presence of 1,4-butanediol diacrylate as a crosslinker.

View Article and Find Full Text PDF

The modulation of molecular interaction with a [3]rotaxane structure enabled a luminescent thermoresponse with high sensitivity over a wide temperature range. Herein, a pyrene moiety was encapsulated by permethylated α-cyclodextrins and was introduced into a polymer network material of poly(vinyl alcohol) as a cross-linker. The luminescence nature associated with the pyrene moiety was continuously switched from a static pyrene-pyrene excimer emission mode at 193 K to a dynamic pyrene-dimethylaniline (DMA) exciplex emission mode at 293 K.

View Article and Find Full Text PDF

Photopolymerization and photoprocessing are core technologies for molding and tuning polymer materials. However, they are incompatible with single materials owing to their contradictory photoreactivity. Herein, an acid-induced photocleavable crosslinker, a platinum-acetylide complex covered by permethylated cyclodextrins, enables the fabrication of photoprocessable materials via photopolymerization with N-(2-hydroxyethyl)acrylamide.

View Article and Find Full Text PDF

Catenanes with multistate switchable properties are promising components for next-generation molecular machines and supramolecular materials. Herein, we report a ligand-controlled switching method, a novel method for the multistate switching of catenanes controlled by complexation with added amine ligands. To verify this method, a [3]catenane comprising cyclic porphyrin dimers with a rigid π-system has been synthesized.

View Article and Find Full Text PDF

A new synthetic strategy for macrocycles bearing multiple coordination moieties was developed. A self-assembled double helix structure, composed of two linear strands bearing 2,2'-bipyridine units and Cu(I) ions, provided access to macrocycles bearing a defined number of 2,2'-bipyridine moieties and a defined ring size, via an olefin-metathesis reaction between two linear strands in the helix. The double helix structure improved the selectivity of the macrocycle synthesis by bringing the reaction points in close proximity even in the case of large macrocycles.

View Article and Find Full Text PDF

A coumarin derivative bearing a [1]rotaxane structure with permethylated α-cyclodextrins suppressed unwanted solvation-induced effects and increased luminescent quantum yields in medium- and high-polarity solvents. The non-radiative decay was suppressed by the twist in the π-conjugated system and the radiative decay was enhanced by the suppression of the polarity-induced structural changes.

View Article and Find Full Text PDF

In this work, a real-time precise electrical method to directly monitor the stochastic binding dynamics of a single supramolecule based on the host-guest interaction between a cyclodextrin and an azo compound is reported. Different intermolecular binding states during the binding process are distinguished by conductance signals detected from graphene-molecule-graphene single-molecule junctions. In combination with theoretical calculations, the reciprocating and unidirectional motions in the trans form as well as the restrained reciprocating motion in the cis form due to the steric hindrance is observed, which could be reversibly switched by visible and UV irradiation.

View Article and Find Full Text PDF

The characterization of single-molecule structures could provide significant insights into the operation mechanisms of functional devices. Structural transformation via isomerization has been extensively employed to implement device functionalities. Although single-molecule identification has recently been achieved using near-field spectroscopy, discrimination between isomeric forms remains challenging.

View Article and Find Full Text PDF

The restriction of local molecular motions is critical for improving the fluorescence quantum yields (FQYs) and the photostability of fluorescent dyes. Herein, we report a supramolecular approach to enhance the performance of fluorescent dyes by incorporating a linked rotaxane structure with permethylated α-cyclodextrins. Tetraphenylethylene (TPE) derivatives generally exhibit low FQYs in solution due to the molecular motions in the excited state.

View Article and Find Full Text PDF

Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale structures of such macromolecules. In particular, compounds with interlocked structures, including rotaxanes, have attracted attention because of their unique supramolecular structures.

View Article and Find Full Text PDF

The trace detection of NO through small sensors is essential for air quality measurement and the health field; however, small sensors based on electrical devices cannot detect NO with the desired selectivity and quantitativity in the parts per billion (ppb) concentration region. In this study, we fabricated metalloporphyrin-modified graphene field-effect transistors (FETs). Mg-, Ni-, Cu-, and Co-porphyrins were deposited on the graphene FETs, and the transfer characteristics were measured.

View Article and Find Full Text PDF

Click reactions (e.g., Huisgen cycloaddition) on metal oxide nanostructures offer a versatile and robust surface molecular modification for various applications because they form strong covalent bonds in a wide range of molecular substrates.

View Article and Find Full Text PDF

Seeded crystal growths of nanostructures within confined spaces offer an interesting approach to design chemical reaction spaces with tailored inner surface properties. However, such crystal growth within confined spaces tends to be inherently difficult as the length increases as a result of confinement effects. Here, we demonstrate a space-confined seeded growth of ZnO nanowires within meter-long microtubes of 100 μm inner diameter with the aspect ratio of up to 10 000, which had been unattainable to previous methods of seeded crystal growths.

View Article and Find Full Text PDF

One of the ultimate goals of analytic chemistry is to efficiently discriminate between amino acids. Here we demonstrate this ability using a single-molecule electrical methodology based on molecular nanocircuits formed from stable graphene-molecule-graphene single-molecule junctions. These molecular junctions are fabricated by covalently bonding a molecular machine featuring a permethylated-β-cyclodextrin between a pair of graphene point contacts.

View Article and Find Full Text PDF

For luminescent materials, the isomerization and intermolecular reactions of their double bonds are often undesirable because they cause a reduction in the luminescence properties of the π-system. Herein, we report a new methodology to simultaneously prevent isomerization and intermolecular reactions by utilizing the steric effect of a linked rotaxane structure. The ring units are covalently linked in order to prevent any undesired shuttling effect from occurring during isomerization.

View Article and Find Full Text PDF

The electrical properties of a single-molecule junction of spiropyran are investigated through the break junction (BJ) method, and the current-voltage (I-V) characteristics are switched from rectified to symmetric through mechanical stimulus. This phenomenon indicates isomerization from spiropyran to merocyanine. In addition, an increase in the conductance associated with isomerization is observed.

View Article and Find Full Text PDF

An insulated metallopolymer that undergoes phosphorescence-to-fluorescence conversion between complementary colors by an acid-stimulus is proposed as a color-tunable material. A Pt-based phosphorescent metallopolymer, where the conjugated polymeric backbone is insulated by a cyclodextrin, is depolymerized by HCl via acidic cleavage of Pt-acetylide bonds to form a fluorescent monomer. The insulation enables phosphorescence-to-fluorescence conversion to take place in the solid film.

View Article and Find Full Text PDF

Phosphorescence colors of cyclodextrin-based insulated Pt-acetylide complexes were tuned by the molecular engineering of the chromophores. A series of Pt complexes bearing various acetylide ligands, including heteroaromatics, were prepared via self-inclusion of the linked macrocycles with the complexes. The decline in the inclusion efficiency derived from the heteroaromatics was overcome by the late-stage insulation via intramolecular slippage after the construction of the Pt-acetylide complexes.

View Article and Find Full Text PDF

Biological systems are known to spontaneously adjust the functioning of neurotransmitters, ion channels, and the immune system, being promoted or regulated through allosteric effects or inhibitors, affording non-linear responses to external stimuli. Here we report that an insulated conjugated bimetallopolymer, in which Ru(II) and Pt(II) complexes are mutually connected with insulated conjugations, exhibits phosphorescence in response to CO gas. The net profile corresponds to a sigmoidal response with a dual self-controlling system, where drastic changes were exhibited at two threshold concentrations.

View Article and Find Full Text PDF

Systematic investigation of rotaxane structures has revealed a rational design for thermally driven switching of their macroscopic properties. At low temperature, the luminophore is insulated by the macrocycles and displays monomer emission, whereas at high temperature, the luminophore is exposed owing to a change in the macrocyclic location distribution and interacts with external molecules, affording a thermally driven luminescent color change with high reversibility and responsiveness. This macroscopic switching through efficient thermal sliding was made possible by appropriate tuning of both the macrocycle-luminophore interactions within the rotaxane and the coupling between the excited luminophore and external molecules in an exciplex.

View Article and Find Full Text PDF