This work presents a novel approach to handling epistemic uncertainty estimates with motivation from Bayesian linear regression. We propose treating the model-dependent variance in the predictive distribution-commonly associated with epistemic uncertainty-as a model for the underlying data distribution. Using high-dimensional random feature transformations, this approach allows for a computationally efficient, parameter-free representation of arbitrary data distributions.
View Article and Find Full Text PDFAt the forefront of bridging computational brain modeling with personalized medicine, this study introduces a novel, real-time, electrocorticogram (ECoG) simulator, based on the digital twin brain concept. Utilizing advanced data assimilation techniques, specifically a Variational Bayesian Recurrent Neural Network model with hierarchical latent units, the simulator dynamically predicts ECoG signals reflecting real-time brain latent states. By assimilating broad ECoG signals from macaque monkeys across awake and anesthetized conditions, the model successfully updated its latent states in real-time, enhancing precision of ECoG signal simulations.
View Article and Find Full Text PDFHumans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.
View Article and Find Full Text PDFIn reinforcement learning (RL), artificial agents are trained to maximize numerical rewards by performing tasks. Exploration is essential in RL because agents must discover information before exploiting it. Two rewards encouraging efficient exploration are the entropy of action policy and curiosity for information gain.
View Article and Find Full Text PDFBehaving efficiently and flexibly is crucial for biological and artificial embodied agents. Behavior is generally classified into two types: habitual (fast but inflexible), and goal-directed (flexible but slow). While these two types of behaviors are typically considered to be managed by two distinct systems in the brain, recent studies have revealed a more sophisticated interplay between them.
View Article and Find Full Text PDFThis study investigated how a physical robot can adapt goal-directed actions in dynamically changing environments, in real-time, using an active inference-based approach with incremental learning from human tutoring examples. Using our active inference-based model, while good generalization can be achieved with appropriate parameters, when faced with sudden, large changes in the environment, a human may have to intervene to correct actions of the robot in order to reach the goal, as a caregiver might guide the hands of a child performing an unfamiliar task. In order for the robot to learn from the human tutor, we propose a new scheme to accomplish incremental learning from these proprioceptive-exteroceptive experiences combined with mental rehearsal of past experiences.
View Article and Find Full Text PDFIntroduction: Investigating the pathological mechanisms of developmental disorders is a challenge because the symptoms are a result of complex and dynamic factors such as neural networks, cognitive behavior, environment, and developmental learning. Recently, computational methods have started to provide a unified framework for understanding developmental disorders, enabling us to describe the interactions among those multiple factors underlying symptoms. However, this approach is still limited because most studies to date have focused on cross-sectional task performance and lacked the perspectives of developmental learning.
View Article and Find Full Text PDFThis study explains how the leader-follower relationship and turn-taking could develop in a dyadic imitative interaction by conducting robotic simulation experiments based on the free energy principle. Our prior study showed that introducing a parameter during the model training phase can determine leader and follower roles for subsequent imitative interactions. The parameter is defined as w, the so-called meta-prior, and is a weighting factor used to regulate the complexity term versus the accuracy term when minimizing the free energy.
View Article and Find Full Text PDFRobot kinematic data, despite being high-dimensional, is highly correlated, especially when considering motions grouped in certain primitives. These almost linear correlations within primitives allow us to interpret motions as points drawn close to a union of low-dimensional affine subspaces in the space of all motions. Motivated by results of embedding theory, in particular, generalizations of the Whitney embedding theorem, we show that random linear projection of motor sequences into low-dimensional space loses very little information about the structure of kinematic data.
View Article and Find Full Text PDFThe brain attenuates its responses to self-produced exteroceptions (e.g., we cannot tickle ourselves).
View Article and Find Full Text PDFWe show that goal-directed action planning and generation in a teleological framework can be formulated by extending the active inference framework. The proposed model, which is built on a variational recurrent neural network model, is characterized by three essential features. These are that (1) goals can be specified for both static sensory states, e.
View Article and Find Full Text PDFEvolution and development operate at different timescales; generations for the one, a lifetime for the other. These two processes, the basis of much of life on earth, interact in many non-trivial ways, but their temporal hierarchy-evolution overarching development-is observed for most multicellular life forms. When designing robots, however, this tenet lifts: It becomes-however natural-a design choice.
View Article and Find Full Text PDFGeneralization by learning is an essential cognitive competency for humans. For example, we can manipulate even unfamiliar objects and can generate mental images before enacting a preplan. How is this possible? Our study investigated this problem by revisiting our previous study (Jung, Matsumoto, & Tani, 2019), which examined the problem of vision-based, goal-directed planning by robots performing a task of block stacking.
View Article and Find Full Text PDFInterdisciplinary efforts from developmental psychology, phenomenology, and philosophy of mind, have studied the rudiments of social cognition and conceptualized distinct forms of intersubjective communication and interaction at human early life. consider a non-mentalist, pre-theoretical, non-conceptual sort of processes that ground a certain level of communication and understanding, and provide support to higher-level cognitive skills. We argue the study of human/neurorobot interaction consists in a unique opportunity to deepen understanding of underlying mechanisms in social cognition through synthetic modeling, while allowing to examine a second person experiential (2PP) access to intersubjectivity in embodied dyadic interaction.
View Article and Find Full Text PDFIt is crucial to ask how agents can achieve goals by generating action plans using only partial models of the world acquired through habituated sensory-motor experiences. Although many existing robotics studies use a forward model framework, there are generalization issues with high degrees of freedom. The current study shows that the predictive coding (PC) and active inference (AIF) frameworks, which employ a generative model, can develop better generalization by learning a prior distribution in a low dimensional latent state space representing probabilistic structures extracted from well habituated sensory-motor trajectories.
View Article and Find Full Text PDFWhen agents interact socially with different intentions (or wills), conflicts are difficult to avoid. Although the means by which social agents can resolve such problems autonomously has not been determined, dynamic characteristics of agency may shed light on underlying mechanisms. Therefore, the current study focused on the sense of agency, a specific aspect of agency referring to congruence between the agent's intention in acting and the outcome, especially in social interaction contexts.
View Article and Find Full Text PDFRecurrent neural networks (RNNs) for reinforcement learning (RL) have shown distinct advantages, e.g., solving memory-dependent tasks and meta-learning.
View Article and Find Full Text PDFThis study introduces PV-RNN, a novel variational RNN inspired by predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how latent variables can learn meaningful representations and how the inference model can transfer future observations to the latent variables.
View Article and Find Full Text PDFRecently, applying computational models developed in cognitive science to psychiatric disorders has been recognized as an essential approach for understanding cognitive mechanisms underlying psychiatric symptoms. Autism spectrum disorder is a neurodevelopmental disorder that is hypothesized to affect information processes in the brain involving the estimation of sensory precision (uncertainty), but the mechanism by which observed symptoms are generated from such abnormalities has not been thoroughly investigated. Using a humanoid robot controlled by a neural network using a precision-weighted prediction error minimization mechanism, it is suggested that both increased and decreased sensory precision could induce the behavioral rigidity characterized by resistance to change that is characteristic of autistic behavior.
View Article and Find Full Text PDFArtificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as and represents a long-standing challenge for neural network models due to in which novel sensory experience interferes with existing representations and leads to abrupt decreases in the performance on previously acquired knowledge. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to.
View Article and Find Full Text PDFVideo image recognition has been extensively studied with rapid progress recently. However, most methods focus on short-term rather than long-term (contextual) video recognition. Convolutional recurrent neural networks (ConvRNNs) provide robust spatio-temporal information processing capabilities for contextual video recognition, but require extensive computation that slows down training.
View Article and Find Full Text PDFThis letter proposes a novel predictive coding type neural network model, the predictive multiple spatiotemporal scales recurrent neural network (P-MSTRNN). The P-MSTRNN learns to predict visually perceived human whole-body cyclic movement patterns by exploiting multiscale spatiotemporal constraints imposed on network dynamics by using differently sized receptive fields as well as different time constant values for each layer. After learning, the network can imitate target movement patterns by inferring or recognizing corresponding intentions by means of the regression of prediction error.
View Article and Find Full Text PDFLifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time.
View Article and Find Full Text PDFThe current paper examines how a recurrent neural network (RNN) model using a dynamic predictive coding scheme can cope with fluctuations in temporal patterns through generalization in learning. The conjecture driving this present inquiry is that a RNN model with multiple timescales (MTRNN) learns by extracting patterns of change from observed temporal patterns, developing an internal dynamic structure such that variance in initial internal states account for modulations in corresponding observed patterns. We trained a MTRNN with low-dimensional temporal patterns, and assessed performance on an imitation task employing these patterns.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2017
We suggest that different behavior generation schemes, such as sensory reflex behavior and intentional proactive behavior, can be developed by a newly proposed dynamic neural network model, named stochastic multiple timescale recurrent neural network (S-MTRNN). The model learns to predict subsequent sensory inputs, generating both their means and their uncertainty levels in terms of variance (or inverse precision) by utilizing its multiple timescale property. This model was employed in robotics learning experiments in which one robot controlled by the S-MTRNN was required to interact with another robot under the condition of uncertainty about the other's behavior.
View Article and Find Full Text PDF