Somatostatin inhibits endocrine and exocrine secretion in various tissues by acting on five somatostatin receptor subtypes (SSTR1-5). The clinical effects of SSTR5 antagonism remain unknown. Herein, we evaluated the effects of SCO-240, an oral SSTR5 antagonist, in healthy individuals.
View Article and Find Full Text PDFIntroduction: Elevated plasma amino acid levels overload kidney function by increasing glomerular filtration rate (GFR). Inhibiting gut amino acid intake may have therapeutic benefits for patients with kidney dysfunction. For a prospective phase 2a trial, we carried out an exploratory evaluation of the safety and efficacy of SCO-792, an enteropeptidase inhibitor that blocks gut amino acid intake, in patients with type 2 diabetes mellitus (T2DM) and albuminuria.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2023
Diabetes is a metabolic disorder with an increasing global prevalence. Somatostatin (SST), a peptide hormone, regulates hormone secretion via five SST receptor (SSTR) subtypes (SSTR1-5) in a tissue-specific manner. As SSTR5 is expressed in pancreatic β-cells and intestinal L-cells, studies have suggested that SSTR5 regulates glucose tolerance through insulin and incretin secretion, thereby having a prominent role in diabetes.
View Article and Find Full Text PDFAcetyl-CoA carboxylase (ACC) 1 and ACC2 are essential rate-limiting enzymes that synthesize malonyl-CoA (M-CoA) from acetyl-CoA. ACC1 is predominantly expressed in lipogenic tissues and regulates the de novo lipogenesis flux. It is upregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), which ultimately leads to the formation of fatty liver.
View Article and Find Full Text PDFBackground: Inhibiting enteropeptidase, a gut serine protease regulating protein digestion, suppresses food intake and ameliorates obesity and diabetes in mice. However, the effects of enteropeptidase inhibition on kidney parameters are largely unknown. Here, we evaluated the chronic effects of an enteropeptidase inhibitor, SCO-792, on kidney function, albuminuria and kidney pathology in spontaneously hypercholesterolaemic (SHC) rats, a rat chronic kidney disease (CKD) model.
View Article and Find Full Text PDFEnteropeptidase is a transmembrane serine protease localized in the lumen of the duodenum that acts as a key enzyme for protein digestion. SCO-792 is an orally available enteropeptidase inhibitor that has been reported to have therapeutic effects on obesity and diabetes in mice. However, the mechanism underlying the therapeutic effect of SCO-792 has not yet been fully elucidated.
View Article and Find Full Text PDFAim: To examine the effects of an enteropeptidase inhibitor, SCO-792, on kidney function in rats.
Materials And Methods: The pharmacological effects of SCO-792 were evaluated in Wistar fatty (WF) rats, a rat model of diabetic kidney disease (DKD).
Results: Oral administration of SCO-792 increased faecal protein content and improved glycaemic control in WF rats.
Aims: Enteropeptidase is a serine protease localized on the duodenal brush border that catalyzes the conversion of inactive trypsinogen into active trypsin, thereby regulating protein breakdown in the gut. We evaluated the effects of SCO-792, a novel enteropeptidase inhibitor, in mice.
Materials And Methods: In vivo inhibition of enteropeptidase was evaluated via an oral protein challenge.
Somatostatin receptor subtype 5 (SSTR5) has emerged as a novel attractive drug target for type 2 diabetes mellitus. Starting from N-benzyl azetidine derivatives 1 and 2 as in-house hit compounds, we explored the introduction of a carboxyl group into the terminal benzene of 1 to enhance SSTR5 antagonistic activity by the combination of the substituents at the 3-position of the isoxazoline. Incorporation of a carboxyl group at the 4-position of the benzene ring resulted in a significant enhancement in potency, however, the 4-benzoic acid derivative 10c exhibited moderate human ether-a-go-go related gene (hERG) inhibitory activity.
View Article and Find Full Text PDFSomatostatin (SST) is a peptide hormone comprising 14 or 28 amino acids that inhibits endocrine and exocrine secretion via five distinct G-protein-coupled receptors (SSTR1-5). SSTR5 has an important role in inhibiting the secretion of pancreatic and gastrointestinal hormones (e.g.
View Article and Find Full Text PDFNihon Yakurigaku Zasshi
September 2010
Lipid rafts, formed by sphingolipids and cholesterol within the membrane bilayer, are believed to have a critical role in signal transduction. P2Y(2) receptors are known to couple with G(q) family G proteins, causing the activation of phospholipase C (PLC) and an increase in intracellular Ca(2+) ([Ca(2+)](i)) levels. In the present study, we investigated the involvement of lipid rafts in P2Y(2) receptor-mediated signaling and cell migration in NG 108-15 cells.
View Article and Find Full Text PDFMastoparan, a wasp venom toxin, has various pharmacological activities, the mechanisms of which are still unknown. To clarify the action of mastoparan on G protein-coupled receptor-mediated signaling, we previously examined the effect of mastoparan on G(q)-mediated signaling and demonstrated that mastoparan binds to gangliosides causing a decrease in Galpha(q/11) content in lipid rafts, and resulting in the inhibition of G(q)-mediated phosphoinositide hydrolysis (Sugama et al., Mol.
View Article and Find Full Text PDFAlthough it is known that mastoparan, a wasp venom toxin, directly activates Gi/o, mastoparan-induced biological responses are not always explained by this mechanism. For instance, we have demonstrated previously that mastoparan suppressed phosphoinositide hydrolysis induced by carbachol in human astrocytoma cells (FEBS Lett 206:91-94, 1990). In the present study, we examined whether mastoparan affected phosphoinositide hydrolysis by interacting with lipid rafts in PC-12 cells.
View Article and Find Full Text PDFSugar-sensitive thin films were prepared by a layer-by-layer deposition of concanavalin A (Con A) and glycogen on the surface of a quartz slide and their sugar-induced decomposition was studied. The Con A/glycogen multilayer films can be decomposed by exposing them to sugar solutions (D-glucose, D-mannose, methyl-alpha-D-glucose and methyl-alpha-D-mannose), as a result of displacement of sugar residues of glycogen from the binding sites of Con A by the free sugar added in the solution. The rate of decomposition significantly depended on the type of sugar and its concentration.
View Article and Find Full Text PDF