Publications by authors named "Jun Sub Choi"

In previous animal model studies, we demonstrated the potential of rAAV2-sVEGFRv-1, which encodes a truncated variant of the alternatively spliced soluble version of VEGF receptor-1 (VEGFR1), as a human gene therapy for age-related macular degeneration (AMD) and diabetic retinopathy (DR). Here, we elucidate in vitro some of the mechanisms by which rAAV2-sVEGFRv-1 exerts its therapeutic effects. Human umbilical vein endothelial cells (HUVECs) were infected with rAAV2-sVEGFRv-1 or a control virus vector in the presence of members of the VEGF family to identify potential binding partners via ELISA, which showed that VEGF-A, VEGF-B, and placental growth factor (PlGF) are all ligands of its transgene product.

View Article and Find Full Text PDF

Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3).

View Article and Find Full Text PDF

In addition to laser photocoagulation, therapeutic interventions for diabetic retinopathy (DR) have heretofore consisted of anti-VEGF drugs, which, besides drawbacks inherent to the treatments themselves, are limited in scope and may not fully address the condition's complex pathophysiology. This is because DR is a multifactorial condition, meaning a gene therapy focused on a target with broader effects, such as the mechanistic target of rapamycin (mTOR), may prove to be the solution in overcoming these concerns. Having previously demonstrated the potential of a mTOR-inhibiting shRNA packaged in a recombinant adeno-associated virus to address a variety of angiogenic retinal diseases, here we explore the effects of rAAV2-shmTOR-SD in a streptozotocin-induced diabetic mouse model.

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a multifactorial disorder of the tears and ocular surface accompanied by ocular discomfort, visual disturbance, tear film instability, and ocular surface inflammation. In the present study, we evaluated the efficacy of the tyrosine kinase inhibitor imatinib mesylate for the treatment of DED.

Methods: Experimental models of DED were generated in Sprague Dawley rats using a combination of benzalkonium chloride (BAC) with atropine sulfate and in New Zealand White rabbits using BAC.

View Article and Find Full Text PDF

Expanding on previous demonstrations of the therapeutic effects of adeno-associated virus (AAV) carrying small-hairpin RNA (shRNA) in downregulating the mechanistic target of rapamycin (mTOR) in in vivo retinal vascular disorders, vascular endothelial growth factor (VEGF)-stimulated endothelial cells were treated with AAV2-shmTOR to examine the role of mTOR inhibition in retinal angiogenesis. AAV2-shmTOR exposure significantly reduced mTOR expression in human umbilical vein endothelial cells (HUVECs) and decreased downstream signaling cascades of mTOR complex 1 (mTORC1) and mTORC2 under VEGF treatment. Moreover, the angiogenic potential of VEGF was significantly inhibited by AAV2-shmTOR, which preserved endothelial integrity by maintaining tight junctions between HUVECs.

View Article and Find Full Text PDF

Purpose: Recent studies have shown that inhibitors of the mechanistic target of rapamycin (mTOR) play important roles in proliferating endothelial cells within the retinal vasculature. Here we explore the effects of inhibiting mTOR as a potential gene therapeutic against pathological retinal angiogenesis in a rat model of oxygen-induced retinopathy (OIR).

Methods: Sprague-Dawley pups were used to generate the OIR model, with a recombinant adeno-associated virus expressing an shRNA (rAAV2-shmTOR-GFP) being administered via intravitreal injection on returning the rats to normoxia, with appropriate controls.

View Article and Find Full Text PDF

Choroidal neovascularization (CNV) is the defining characteristic of the wet subtype of age-related macular degeneration (AMD), which is a rapidly growing global health problem. Previously, we had demonstrated the therapeutic potential of gene therapy against CNV using short hairpin RNA (shRNA) delivered via recombinant adeno-associated virus (rAAV), which abrogates mammalian-to-mechanistic (mTOR) activity in a novel manner by simultaneously inhibiting both mTOR complexes. Both the target and use of gene therapy represent a novel treatment modality against AMD.

View Article and Find Full Text PDF

Receptor interacting protein kinase 1 (RIPK1) plays a key role in necroptosis, which is a type of programmed necrosis that is involved in ocular diseases, including glaucoma and dry age-related macular degeneration (AMD). We previously introduced RIPK1-inhibitory compound (RIC), which has biochemical characteristics and a mode of action that are distinct from those of the prototype RIPK1 inhibitor necrostatin-1. The intraperitoneal administration of RIC exerts a protective effect on retinal ganglion cells against a glaucomatous insult.

View Article and Find Full Text PDF

Purpose: With anti-VEGF-based treatments for wet AMD requiring frequent injections, it is often burdensome to both patients and healthcare providers. To explore its possibility as a desirable alternative, we investigated the therapeutic potential of a recombinant adeno-associated virus 2 expressing a soluble variant of VEGF receptor-1 (rAAV2-sVEGFRv-1) in a laser-induced choroidal neovascularization (CNV) model, as CNV is a defining feature of AMD progression.

Methods: C57/B6 mice were intravitreally administered with rAAV2-sVEGFRv-1, rAAV2-GFP, or clinically used bevacizumab after CNV lesions were induced via laser photocoagulation.

View Article and Find Full Text PDF

Backgound: To identify and compare specific protein levels between overacting inferior oblique (IO) muscles in superior oblique (SO) palsy patients and normal IO muscles.

Methods: We obtained 20 IO muscle samples from SO palsy patients with IO overaction ≥ + 3 who underwent IO myectomies (IOOA group), and 20 IO samples from brain death donors whose IO had functioned normally, according to their ophthalmological chart review (control group). We used MyoD for identifying satellite cell activation, insulin-like growth factor binding protein 5 (IGFBP5) for IGF effects, thioredoxin for oxidative stress, and p27 for satellite cell activation or oxidative stress in both groups.

View Article and Find Full Text PDF

Discoidin domain receptor 1 (DDR1) is involved in tumorigenesis and angiogenesis. However, its role in lymphangiogenesis has been unknown. Here, we tested whether downregulation of DDR1 expression by miR-199a/b can suppress lymphangiogenesis.

View Article and Find Full Text PDF

In femtosecond laser-assisted cataract surgery, the parameter such as horizontal spot spacing and energy level can be adjusted. Although there have been several studies reported on various laser systems, showing the effects of varying energy levels and horizontal spot spacing on lens capsulotomy cut edges, none have been reported on the Catalys laser system (Abbott Medical Optics, Inc., Santa Ana, CA).

View Article and Find Full Text PDF

Choroidal neovascularization (CNV) is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD) and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF), the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR) has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA), which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV.

View Article and Find Full Text PDF

Cell death of retinal pigment epithelium (RPE) is characterized as an essential late-stage phenomenon of dry age-related macular degeneration (AMD). The aim of this study was to elucidate the molecular mechanism underlying RPE cell death after exposure to oxidative stress, which occurs often because of the anatomical location of RPE cells. ARPE-19, an established RPE cell line, exhibited necrotic features involving poly (ADP-ribose) polymerase-1 (PARP-1) activation in response to hydrogen peroxide (HO).

View Article and Find Full Text PDF

The recombinant protein TK1-2, which consists of two kringle domains of tissue-type plasminogen activator (t-PA), inhibits angiogenesis and tumor growth. ɪn this study, we examined the anti-angiogenic activities of peptides derived from kringle 2 domain of t-PA to identify the functional core sequence. Seven peptides were constructed from the kringle 2 sequence, based on the structure and characteristics of amino acid residues, and were analyzed for their inhibitory effects on endothelial cells (ECs).

View Article and Find Full Text PDF

The aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA-based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)-based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy.

View Article and Find Full Text PDF

Diquafosol is known as a purinergic P2Y2 receptor (P2Y2R) agonist that stimulates water and mucin secretion from conjunctival epithelial cells and goblet cells, leading to tear film stability in dry eye. However, its effect on corneal epithelial healing has not yet been elucidated. The aim of the present study was to evaluate the effect of diquafosol on corneal epithelial healing in vivo and on P2Y2R-related downstream signaling pathways in vitro.

View Article and Find Full Text PDF

Purpose: Prospero homeobox 1 (Prox1) siRNA is a small interfering RNA that is designed to specifically bind Prox1 mRNA. We determined whether Prox1 siRNA inhibits lymphangiogenesis and hemangiogenesis after acute corneal inflammation.

Methods: Three Prox1 siRNAs were synthesized and investigated for their effects on Prox1 mRNA expression and tube formation in human dermal lymphatic endothelial cells (HDLECs) in vitro.

View Article and Find Full Text PDF

Aim: Two-photon microscopy was performed to visualize ocular distribution of Flt1 peptide-hyaluronate (HA) conjugate micelles for eye drop treatment of corneal neovascularization.

Materials & Methods: Flt1 peptide-HA conjugate micelles were topically administered to the eye for two-photon microscopy and antiangiogenic effect assessment after silver nitrate cauterization.

Results: In vivo two-photon microscopy revealed that Flt1 peptide-HA conjugate micelles were absorbed and remained on the corneal epithelia with an increased residence time, facilitating the corneal delivery of carboxyfluorescein succinimidyl ester (CFSE) as a model drug.

View Article and Find Full Text PDF

Background And Purpose: Abnormally induced angiogenesis and lymphangiogenesis are associated with human diseases, including neovascular eye disease. Substances that inhibit these processes may have potential as an attractive therapeutic strategy for these diseases.

Experimental Approach: In vitro and in vivo angiogenesis and/or lymphangiogenesis were assessed in VEGF- or hypoxia-stimulated endothelial and retinal cells and in animal models of oxygen-induced retinopathy (OIR), streptozotocin-induced diabetic retinopathy (SIDR), suture-induced inflammatory corneal neovascularization (SICNV) and silver nitrate-induced corneal neovascularization.

View Article and Find Full Text PDF

Background: Lymphangiogenesis is one of the major causes of corneal graft rejection. Among the lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and -D are considered to be the most potent. Both bind to VEGF receptor 3 (VEGFR3) to activate Prospero homeobox 1 (Prox1), a transcription factor essential for the development and maintenance of lymphatic vasculature.

View Article and Find Full Text PDF

Objective: Although stem cell factor (SCF) has been shown to play a critical role in hematopoiesis, gametogenesis, and melanogenesis, the function of SCF in the regulation of vascular integrity has not been studied.

Approach And Results: We demonstrated that SCF binds to and activates the cKit receptor in endothelial cells, thereby increasing the internalization of vascular endothelial-cadherin and enhancing extravasation of dyes to a similar extent as vascular endothelial growth factor. SCF-mediated cKit activation in endothelial cells enhanced the phosphorylation of endothelial nitric oxide (NO) synthase via the phosphoinositide 3-kinase/Akt signaling pathway and subsequently increased the production of NO.

View Article and Find Full Text PDF

Nonlinear multiphoton absorption induced by focusing near infrared (NIR) femtosecond (fs) laser pulses into a transparent cornea allows surgery on neovascular structures with minimal collateral damage. In this report, we introduce an fs laser-based microsurgery for selective treatment of rat corneal neovascularizations (in vivo). Contiguous tissue effects are achieved by scanning a focused laser pulse below the corneal surface with a fluence range of 2.

View Article and Find Full Text PDF

Purpose: To determine the impact of β-1,3-glucan isolated from Euglena gracilis on corneal epithelial cell migration and on wound healing in a rat alkali burn model.

Methods: Immortalized human corneal epithelial cells (HCECs) were cultured in media with 50, 100 and 200 μg/mL laminarin (β-1,3- and β-1,6-glucans), β-1,3-glucan and hyaluronic acid (HA)-conjugated β-1,3-glucan; Dulbecco's modified Eagle's medium (DMEM)/nutrient mixture F-12 (negative control) and serum containing DMEM/nutrient mixture F-12 (positive control). Migration assays were conducted via the manual scraping of HCECs.

View Article and Find Full Text PDF

Many factors are involved in the corneal wound healing mechanism, including adhesion, migration, and proliferation of corneal epithelial cells. Abnormal corneal wound healing leads to corneal edema, neovascularization, scar formation, and poor vision. Three agents, 17β-estradiol, nicergoline, and β-glucan, have demonstrated positive effects on the wound healing response in laboratory experiments and may be of help in controlling wound healing in corneas that have suffered epithelial damage or have undergone refractive surgery.

View Article and Find Full Text PDF