Publications by authors named "Jun Rong Tan"

Ischemic stroke is a major cause of mortality and morbidity globally. Among the ischemic stroke subtypes, cardioembolic stroke is with poor functional outcome (Modified Rankin score ≥ 2). Early diagnosis of cardioembolic stroke will prove beneficial.

View Article and Find Full Text PDF

Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional.

View Article and Find Full Text PDF

Long non-coding RNAs and microRNAs control gene expression to determine central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that plays an important role in neurite outgrowth during neuronal development and its precise expression is crucial for correct brain development. The data described here is related to the research article titled "A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of Neuronal growth regulator 1 (NEGR1) adhesion protein" [1].

View Article and Find Full Text PDF

The regulatory roles for non-coding RNAs, the long non-coding RNAs and microRNAs, are emerging as crucial determinants of central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that has been shown to play an important role in neurite outgrowth during neuronal development. Precise expression of the Negr1 gene is crucial for proper brain development and is dysregulated during brain injury.

View Article and Find Full Text PDF

MicroRNAs have been identified as key regulators of gene expression and thus their potential in disease diagnostics, prognosis and therapy is being actively pursued. Deregulation of microRNAs in cerebral pathogenesis has been reported to a limited extent in both animal models and human. Due to the complexity of the pathology, identifying stroke specific microRNAs has been a challenge.

View Article and Find Full Text PDF

Ischemic stroke is a multi-factorial disease where some patients present themselves with little or no risk factors. Blood microRNA expression profiles are becoming useful in the diagnosis and prognosis of human diseases. We therefore investigated the blood microRNA profiles in young stroke patients who presented with minimal or absence of risk factors for stroke such as type 2 diabetes, dyslipidemia and hypertension.

View Article and Find Full Text PDF

Over the past decade, scientific discoveries have highlighted new roles for a unique class of non-coding RNAs. Transcribed from the genome, these non-coding RNAs have been implicated in determining the biological complexity seen in mammals by acting as transcriptional and translational regulators. Non-coding RNAs, which can be sub-classified into long non-coding RNAs, microRNAs, PIWI-interacting RNAs and several others, are widely expressed in the nervous system with roles in neurogenesis, development and maintenance of the neuronal phenotype.

View Article and Find Full Text PDF

Pathogenesis of cerebral ischemia has so far been described in the context of proteins and the pathways that they regulate. The discovery of biomarkers has also been focussed mainly on proteins and to some extent on the mRNAs that encode them. The knowledge on the role of microRNAs in understanding the pathogenesis of cerebral ischemia is still at its infancy.

View Article and Find Full Text PDF

Aquaporins facilitate efficient diffusion of water across cellular membranes, and water homeostasis is critically important in conditions such as cerebral edema. Changes in aquaporin 1 and 4 expression in the brain are associated with cerebral edema, and the lack of water channel modulators is often highlighted. Here we present evidence of an endogenous modulator of aquaporin 1 and 4.

View Article and Find Full Text PDF