Front Cell Infect Microbiol
December 2024
Introduction: Coronavirus disease 2019 (COVID-19) alters the gut microbiome. This study aimed to assess the association between the disease severity of COVID-19 and changes in stool microbes through a seven-month follow-up of stool collection.
Methods: We conducted a multicentre, prospective longitudinal study of 58 COVID-19 patients and 116 uninfected controls.
Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation.
View Article and Find Full Text PDFThe intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs.
View Article and Find Full Text PDFPregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls).
View Article and Find Full Text PDFCurr Opin Neurobiol
June 2023
Cytokines are small, secreted proteins that are known for their roles in the immune system. An accumulating body of evidence indicates that cytokines also work as neuromodulators in the central nervous system (CNS). Cytokines can access the CNS through multiple routes to directly impact neurons.
View Article and Find Full Text PDFIntestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs.
View Article and Find Full Text PDFNeuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.
View Article and Find Full Text PDFIL-17a is widely considered an inflammatory cytokine, linked to the development and severity of autoimmune diseases such as inflammatory bowel disease and psoriasis. However, a recent report by Konieczny et al. sheds light on a novel protective role of IL-17a in wound healing, adding to the growing list of studies highlighting a noninflammatory function for IL-17a.
View Article and Find Full Text PDFMembers of the human gut microbiome enzymatically process many bioactive molecules in the gastrointestinal tract. Most gut bacterial modifications characterized so far are hydrolytic or reductive in nature. Here we report that abundant human gut bacteria from the phylum Bacteroidetes perform conjugative modifications by selectively sulfonating steroidal metabolites.
View Article and Find Full Text PDFInvestigating intestinal immune responses is critical to understanding local and systemic immunity. However, obtaining resident intestinal immune cells with high cell viability can be challenging. Here, we provide an optimized protocol to isolate lamina propria lymphocytes from the small and large intestines, including lymphocyte activation for cytokine expression analysis and techniques for surface and intracellular antibody staining and flow cytometry.
View Article and Find Full Text PDFCan gut-residing bacteria influence mood and anxiety? And can targeting bacteria-produced metabolites reduce anxiety? Based on two Nature and Nature Medicine papers, the answers to these questions are likely yes. Needham, Campbell, and colleagues identified bacteria that enhance anxiety-like behaviors in mice and ways to mitigate anxiety in autistic patients.
View Article and Find Full Text PDFThe microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (T17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits T17 cell differentiation.
View Article and Find Full Text PDFThe recent revelation that the gut microbiome, home to approximately 100 trillion microorganisms, is implicated in the development of both health and disease has spurred an exponential increase in interdisciplinary research involving gut microbiology. In all this hype, there is a need to better understand and contextualize the emerging evidence for the role of the gut microbiota in neurodegenerative and neurodevelopmental diseases, including central nervous system (CNS) malignancies. In this review, we aim to unravel the complex interactions of the microbiota-gut-brain-axis to pave a better understanding of microbiota-mediated pathogenesis, avenues for noninvasive prognosis, and therapeutic possibilities leveraging microbiota-gut-brain-axis modulations.
View Article and Find Full Text PDFExposure to heightened inflammation in pregnancy caused by infections or other inflammatory insults has been associated with the onset of neurodevelopmental and psychiatric disorders in children. Rodent models have provided unique insights into how this maternal immune activation (MIA) disrupts brain development. Here, we discuss the key immune factors involved, highlight recent advances in determining the molecular and cellular pathways of MIA, and review how the maternal immune system affects fetal development.
View Article and Find Full Text PDFTo accommodate the changing needs of the developing brain, microglia must undergo substantial morphological, phenotypic, and functional reprogramming. Here, we examined whether cellular metabolism regulates microglial function during neurodevelopment. Microglial mitochondria bioenergetics correlated with and were functionally coupled to phagocytic activity in the developing brain.
View Article and Find Full Text PDFChildren with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life.
View Article and Find Full Text PDFExposure to the mold, Aspergillus, is ubiquitous and generally has no adverse consequences in immunocompetent persons. However, invasive and allergic aspergillosis can develop in immunocompromised and atopic individuals, respectively. Previously, we demonstrated that mouse lung eosinophils produce IL-17 in response to stimulation by live conidia and antigens of A.
View Article and Find Full Text PDFCell Host Microbe
September 2021
Bile acids act as signaling molecules that regulate immune homeostasis, including the differentiation of CD4 T cells into distinct T cell subsets. The bile acid metabolite isoallolithocholic acid (isoalloLCA) enhances the differentiation of anti-inflammatory regulatory T cells (T cells) by facilitating the formation of a permissive chromatin structure in the promoter region of the transcription factor forkhead box P3 (Foxp3). Here, we identify gut bacteria that synthesize isoalloLCA from 3-oxolithocholic acid and uncover a gene cluster responsible for the conversion in members of the abundant human gut bacterial phylum Bacteroidetes.
View Article and Find Full Text PDFThere is a persistent male bias in the prevalence and severity of COVID-19 disease. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of disease in adults, and play a key role in the placental anti-viral response.
View Article and Find Full Text PDFBariatric surgery is the most effective treatment for type 2 diabetes and is associated with changes in gut metabolites. Previous work uncovered a gut-restricted TGR5 agonist with anti-diabetic properties-cholic acid-7-sulfate (CA7S)-that is elevated following sleeve gastrectomy (SG). Here, we elucidate a microbiome-dependent pathway by which SG increases CA7S production.
View Article and Find Full Text PDFMaternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe Tec kinase IL-2-inducible T cell kinase (ITK) regulates the expression of TCR-induced genes. T cell responses are impaired but not absent. ITK inhibition prevented colitis disease progression and impaired T cell migration to the colon in mice.
View Article and Find Full Text PDF