Organic anion transporting polypeptides (OATP) 1B1 and 1B3 are expressed in liver cells and are involved in drug uptake in the liver. OATP1B activity varies due to polymorphisms and is decreased by OATP1B inhibitors. Variability of OATP1B activity impacts the pharmacokinetics of OATP1B substrate drugs through drug-drug interactions.
View Article and Find Full Text PDFAims: Cyclosporin A (CyA) has potent inhibitory activity on organic anion transporting polypeptide 1B (OATP1B), causing drug-drug interactions with its substrate drugs. 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a uraemic toxin, has also been suggested to inhibit OATP1B activity. Recent study has identified coproporphyrin-I (CP-I) as a specific endogenous substrate for OATP1B, which is useful to indicate OATP1B activity.
View Article and Find Full Text PDF4β-Hydroxycholesterol (4β-OHC) is formed by Cytochrome P450 (CYP)3A and has drawn attention as an endogenous phenotyping probe for CYP3A activity. However, 4β-OHC is also increased by cholesterol autooxidation occurring in vitro due to dysregulated storage and in vivo by oxidative stress or inflammation, independent of CYP3A activity. 4α-hydroxycholesterol (4α-OHC), a stereoisomer of 4β-OHC, is also formed via autooxidation of cholesterol, not by CYP3A, and thus may have clinical potential in reflecting the state of cholesterol autooxidation.
View Article and Find Full Text PDF