Publications by authors named "Jun Nakanishi"

As an alternative to conventional plastic dishes, the interface between water-immiscible hydrophobic fluids, such as perfluorocarbons and silicones, permits cell adhesion and growth. Thus, it is expected to replace the petroleum-derived products in a sustainable society. However, most hydrophobic fluids are cytotoxic, which limits the range of mechanical and chemical cues exposed to the cells.

View Article and Find Full Text PDF

Objective: Endoplasmic reticulum (ER) stress plays important roles not only in stress avoidance, but also in cell differentiation and maturation, cell proliferation, and promotion of bone formation. This study aimed to investigate the involvement of ER stress in the onset of pulpitis.

Methods: Immunohistochemical analysis was conducted on human teeth extracted for orthodontic reasons.

View Article and Find Full Text PDF

Objective: To investigate the effect of increasing the apical size of roots enlarged for root canal obturation on the outcome of non-surgical endodontic treatment for teeth with apical periodontitis.

Methods: In this retrospective study, we included 210 cases of single-rooted canals treated at our dental units between October 2009 and January 2022. The clinical outcomes of teeth with enlarged root apical size from the International Organization for Standardization standard numbers 25 to 100 were investigated.

View Article and Find Full Text PDF

The extracellular matrix determines cell morphology and stiffness by manipulating the cytoskeleton. The impacts of extracellular matrix cues, including the mechanical and topographical cues on microtubules and their role in biological behaviors, are previously studied. However, there is a lack of understanding about how microtubules (MTs) are affected by environmental chemical cues, such as extracellular matrix density.

View Article and Find Full Text PDF

This study reports the reversible solubility switching of a polymer triggered by non-phototoxic visible light. A photochromic polymerizable azobenzene monomer with four methoxy groups at the ortho-position (mAzoA) was synthesized, exhibiting reversible photoisomerization between trans- and cis-states using green (546 nm) and blue light (436 nm). Free radical copolymerization of hydrophilic dimethylacrylamide (DMAAm) with mAzoA produced a light-responsive random copolymer (P(mAzoA-r-DMAAm)) that shows a reversible photochromic reaction to visible light.

View Article and Find Full Text PDF

In cancer metastasis, collectively migrating clusters are discriminated into leader and follower cells that move through extracellular matrices (ECMs) with different characteristics. The impact of changes in ECM protein types on leader cells and migrating clusters is unknown. To address this, we investigated the response of leader cells and migrating clusters upon moving from one ECM protein to another using a photoactivatable substrate bearing photocleavable PEG (PCP), whose surface changes from protein-repellent to protein-adhesive in response to light.

View Article and Find Full Text PDF

Unlabelled: The emergence of drug-resistant bacteria, particularly methicillin-resistant (MRSA) and vancomycin-resistant enterococci (VRE), has increased the need to discover novel antimicrobial agents that are effective against these species. Here, we describe the identification and purification of the mutacin BHT-B-like gene locus and bacteriocin peptide from , which is closely related to ; hence, we named this bacteriocin ursoricin. Ursoricin is a cationic, chromosome-encoded peptide that has potent antimicrobial effects against Gram-positive pathogens, including MRSA and VRE, with minimum inhibitory concentrations in the micromolar range.

View Article and Find Full Text PDF

Living cells actively interact biochemically and mechanically with the surrounding extracellular matrices (ECMs) and undergo dramatic morphological and dimensional transitions, concomitantly remodeling ECMs. However, there is no suitable method to quantitatively discuss the contribution of mechanical interactions in such mutually adaptive processes. Herein, a highly deformable "living" cellular scaffold is developed to evaluate overall mechanical energy transfer between cell and ECMs.

View Article and Find Full Text PDF

Unlabelled: is a cariogenic bacterium that produces a variety of bacteriocins and retains resistance to these bacteriocins. In this study, we investigated the susceptibility of 127 . strains to nukacins produced by spp.

View Article and Find Full Text PDF

In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities.

View Article and Find Full Text PDF

The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces.

View Article and Find Full Text PDF

Aim: To retrospectively investigate the relationship between the CD4+ T-cell counts at baseline and the efficacy of the initial periodontal treatment of patients undergoing treatment for human immunodeficiency virus (HIV) infection using the periodontal inflamed surface area (PISA).

Materials And Methods: Thirty-three patients with chronic periodontitis who had undergone periodontal examination at baseline and after the initial periodontal treatment were enrolled. PISA was calculated from the periodontal probing depth and bleeding on probing, and the ratio of PISA after treatment to that at baseline (PISA response ratio) was calculated.

View Article and Find Full Text PDF
Article Synopsis
  • A new form of platelet-rich plasma called freeze-dried platelet factor concentrate (PFC-FD) is being investigated to improve treatment outcomes for patients with knee osteoarthritis (OA) in a clinical study.* -
  • The study involved 312 patients, mostly women around 63 years old, where 62% showed significant improvement in symptoms after receiving a PFC-FD injection over a 12-month period, but those with severe OA (grade 4) had lower success rates.* -
  • The results indicated a low risk of adverse effects, with only 6% experiencing minor issues like pain or swelling, while noting that nearly 40% of patients did not see improvement, especially those with advanced OA.*
View Article and Find Full Text PDF
Article Synopsis
  • * Experiments demonstrate that nanaomycin K significantly inhibits cell proliferation and tumor growth, both in vitro and in vivo, particularly in TRAMP-C2 carcinoma-bearing mice.
  • * The drug's mechanism involves the suppression of processes like epithelial-mesenchymal transition and the MAPK signaling pathway, leading to reduced tumor migration and enhanced apoptosis markers.
View Article and Find Full Text PDF

The native extracellular matrix is highly dynamic with continuous mutual feedback between cells being responsible for many important cell function regulators. However, establishing bidirectional interaction between complex adaptive microenvironments and cells remains elusive. Herein an adaptive biomaterial based on lysozyme monolayers self-assembled at a perfluorocarbon FC40-water interface is reported.

View Article and Find Full Text PDF

Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge.

View Article and Find Full Text PDF

The non-canonical photoisomerization-induced phase separation of an azobenzene-bearing polymer is found. The polymer composed of acrylate-based azobenzene (AzoAA) and N,N-dimethylacrylamide (DMA), namely poly(AzoAA-r-DMA), phase separates under visible light-induced cis-to-trans isomerization at high molecular weight, whereas the phase separation is realized under UV light-induced trans-to-cis isomerization at low molecular weight. Conventionally, the origin of photoisomerization-induced phase separation is believed to arise from the difference in polarity between the apolar trans and polar cis states; thereby the direction of phase changes, either to separate or dissolute, is uniquely determined by the polarity changes during the isomerization of azobenzene.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) gains unique selective cytotoxicity against cancer cells upon conjugation with gold nanoparticles (GNPs). We have previously developed several lysine-free EGF mutants for favorable interactions between the nanoparticle conjugates with EGF receptor (EGFR) and found one mutant (SR: K28S/K48R) showing stronger anticancer activities. However, the exact mechanisms for the selective cytotoxicity enhancement in the SR mutant remained unsolved.

View Article and Find Full Text PDF

Background: The relationship between internal root resorption and oxidative stress has not yet been reported. This study aimed to add molecular insight into internal root resorption. The present study was conducted to investigate the effect of hydrogen peroxide (HO) as an inducer of oxidative stress on the calcification ability of human dental pulp cells (hDPCs) and the involvement of inositol 1, 4, 5-trisphosphate (IP3).

View Article and Find Full Text PDF

Recent progress in mechanobiology has highlighted the importance of physical cues, such as mechanics, geometry (size), topography, and porosity, in the determination of cellular activities and fates, in addition to biochemical factors derived from their surroundings. In this review, we will first provide an overview of how such fundamental insights are identified by synchronizing the hierarchical nature of biological systems and static materials with tunable physical cues. Thereafter, we will explain the photoresponsive dynamic biomaterials to dissect the spatiotemporal aspects of the dependence of biological functions on physical cues.

View Article and Find Full Text PDF

Stem cells and their microenvironment interact cooperatively to dictate their fates. Biomaterials are dynamically remodeled by stem cells, and stem cells sense and translate the changes into cell fate decisions. We have previously reported that adaptive biomaterials composed of fibronectin inserted into protein nanosheets at a liquid interface enhance neuronal differentiation of human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

There is growing evidence that cellular functions are regulated by the viscoelastic nature of surrounding matrices. This study aimed to investigate the impact of interfacial viscoelasticity on adhesion and epithelial-mesenchymal transition (EMT) behaviors of epithelial cells. The interfacial viscoelasticity was manipulated using spin-coated thin films composed of copolymers of ε-caprolactone and d,l-lactide photo-cross-linked with benzophenone, whose mechanical properties were characterized using atomic force microscopy and a rheometer.

View Article and Find Full Text PDF

Epidermal growth factor (EGF)-nanoparticle conjugates have the potential for cancer therapeutics due to the unique cytotoxic activity in cancer cells with EGF receptor (EGFR) overexpression. To gain its maximum activity, the EGF molecule should be immobilized on the nanoparticle surface in a defined orientation so as the bulky nanoparticle will not interfere EGF-EGFR interaction. Herein, we demonstrate successful enhancement of the anti-cancer activity of EGF-gold nanoparticle conjugates (EGF-GNPs) by controlling the EGF orientation on the surface of the nanoparticle through site-specific mutagenesis.

View Article and Find Full Text PDF

Recent progress in mechanobiology sheds light on the regulation of cellular phenotypes by dissipative property of matrices, i.e., viscosity, fluidity, and stress relaxation, in addition to extensively studied elasticity.

View Article and Find Full Text PDF