The tendency of zinc (Zn) anodes to form uncontrolled Zn electrodeposits and the occurrence of side-reactions at Zn-electrolyte interfaces are a fundamental barrier hampering broad applications of aqueous rechargeable Zn-based batteries. Herein, a ferroelectric domain-mediated strategy is proposed to manipulate the Zn plating behavior and achieve controllable Zn growth orientation by coating Zn foil with a ferroelectric tetragonal KTN (t-KTN) layer. The ferroelectric domain of t-KTN single crystals exhibits periodic distribution of upward and downward polarizations, corresponding to alternating positively and negatively charged surfaces.
View Article and Find Full Text PDFTransition metal oxides exhibit strong structure-property correlations, which has been extensively investigated and utilized for achieving efficient oxygen electrocatalysts. However, high-performance oxide-based electrocatalysts for hydrogen evolution are quite limited, and the mechanism still remains elusive. Here we demonstrate the strong correlations between the electronic structure and hydrogen electrocatalytic activity within a single oxide system TiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
Water electrolysis has been considered as one of the most efficient approaches to produce renewable energy, although efficient removal of gas bubbles during the process is still challenging, which has been proved to be critical and can further promote electrocatalytic water splitting. Herein, a novel strategy is developed to increase gas bubble escape rate for water splitting by using nonwoven stainless steel fabrics (NWSSFs) as the conductive substrate decorated with flakelike iron nickel-layered double hydroxide (FeNi LDH) nanostructures. The as-prepared FeNi LDH@NWSSF electrode shows a much faster escape rate of gas bubbles as compared to that of other commonly used three-dimensional porous catalytic electrodes, and the maximum dragging force for a bubble releasing between NWSSF channels is only one-seventh of the dragging force within nickel foam channels.
View Article and Find Full Text PDFTo obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity.
View Article and Find Full Text PDFTo reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure.
View Article and Find Full Text PDFA generalized strategy for developing a hybrid two-dimensional nanostructured dual T-T MRI contrast agent (CA), by co-loading graphene oxide with both Mn-doped FeO (T agent) and MnO (T agent) magnetic nanoparticles, is reported. Typical T/T signal quenching, due to magnetic coupling, was not observed because of the fair T CA separation distance from the T CA on the graphene oxide. The resultant two-dimensional nanostructured MRI CA complements the existing dual T-T MRI CA libraries.
View Article and Find Full Text PDFWater dispersible two-dimensional magnetic nanocomposites are formed by phase-transferring hydrophobic manganese-doped ferrite nanoparticles (MFPs) into aqueous solvent using a one-step simple approach involving only graphene oxide (GO) as the phase transfer agent. The resultant hydrophilic magnetic nanocomposites (MFNs) are surprisingly stable in the aqueous phase despite its large hydrodynamic size (dhyd). Because of its unique construct that promotes water accessibility towards the MFP core, large MFNs loaded with an 18 nm MFP core (MFN-18; dhyd = 577.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has become an integral part of modern clinical imaging due to its non-invasiveness and versatility in providing tissue and organ images with high spatial resolution. With the current MRI advancement, MRI imaging probes with suitable biocompatibility, good colloidal stability, enhanced relaxometric properties and advanced functionalities are highly demanded. As such, MRI contrast agents (CAs) have been an extensive research and development area.
View Article and Find Full Text PDFUniform magnetic nanoparticle-loaded polymer nanospheres with different loading contents of manganese ferrite nanoparticles were successfully synthesized using a flexible emulsion process. The MnFeO-loaded polymer nanospheres displayed an excellent dispersibility in both water and phosphate buffer saline. The effect of loading ratio and size of MnFeO nanoparticles within the nanospheres on the specific absorption rate (SAR) under an alternating magnetic field was investigated.
View Article and Find Full Text PDFWe improved the piezoelectric property of poly(vinylidene fluoride) (PVDF) by employing graphene. The reduced graphene oxide (rGO)–PVDF nanocomposites were prepared by a solution casting method and the rGO contents ranged from 0.0 wt% to 0.
View Article and Find Full Text PDFIn this study, MnFe(2)O(4) nanoparticle (MFNP)-decorated graphene oxide nanocomposites (MGONCs) are prepared through a simple mini-emulsion and solvent evaporation process. It is demonstrated that the loading of magnetic nanocrystals can be tuned by varying the ratio of graphene oxide/magnetic nanoparticles. On top of that, the hydrodynamic size range of the obtained nanocomposites can be optimized by varying the sonication time during the emulsion process.
View Article and Find Full Text PDFSelf-assembled amphiphilic peptide units and supercoiled, circular double-stranded plasmid DNA are used as building blocks to form peptide/DNA fibers for virus encapsulation. Since the fiber formation process takes place under ambient conditions and is aqueous-based without the use of denaturing organic solvents, the bioactivity of viruses is well preserved.
View Article and Find Full Text PDFIn this paper, we report single step synthesis of hydrophilic superparamagnetic magnetite nanoparticles by thermolysis of Fe(acac)3 and their characterization of the properties relevant to biomedical applications like hyperthermia and magnetic resonance imaging (MRI). Size and morphology of the particles were determined by Transmission electron microscopy (TEM) while phase purity and structure of the particles were identified by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Magnetic properties were evaluated using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements.
View Article and Find Full Text PDFAims: Superparamagnetic magnetite nanoparticles have been under intensive investigation in nanomedicine. However, it is still a challenge to synthesize high-quality water-stable magnetite nanoparticles for better magnetic performance and less side effects in medical MRI and nanothermotherapy.
Materials & Methods: We successfully synthesized hydrophilic magnetite nanoparticles through thermal decomposition of Fe(acac)(3) in triethylene glycol, which were coated with a triethylene glycol layer and thus demonstrated excellent water stability.
Nonviral magnetofection facilitates gene transfer by using a magnetic field to concentrate magnetic nanoparticle-associated plasmid delivery vectors onto target cells. In light of the well-established effects of the Tat peptide, a cationic cell-penetrating peptide, that enhances the cytoplasmic delivery of a variety of cargos, we tested whether the combined use of magnetofection and Tat-mediated intracellular delivery would improve transfection efficiency. Through electrostatic interaction, gene transfer complexes were generated by mixing polyethylenimine-coated cationic magnetic iron beads with plasmid DNA, followed by addition of a bis(cysteinyl) histidine-rich Tat peptide.
View Article and Find Full Text PDFNatural paclitaxel (Taxol) is an effective anti-cancer drug, although a critical disadvantage is its non-targeting nature. To address this issue, cholesterol-grafted poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide-co-undecenoic acid) was synthesized with different starting monomer ratios via a free radical copolymerization route. Folate was subsequently attached to the hydrophilic segment of the polymer in order to target folate receptors-overexpressing cancer cells.
View Article and Find Full Text PDF