Publications by authors named "Jun Matsuzaki"

Article Synopsis
  • This study explores how tomato production in solar greenhouses can fluctuate due to environmental changes, and aims to predict the anthesis rate (flowering time) of tomatoes using metabolome data from plant leaves.
  • A predictive model was built using linear regression techniques, achieving a strong prediction accuracy (R value of 0.85), identifying 29 key metabolites as potential markers for anthesis rates.
  • The research highlights the role of trigonelline, a metabolite that remains stable throughout the day, as a significant indicator for predicting anthesis rates, showcasing the usefulness of machine learning in agricultural science.
View Article and Find Full Text PDF

The article Space-time analysis of gravitropism in etiolated Arabidopsis hypocotyls using bioluminescence imaging of the IAA19 promoter fusion with a destabilized luciferase reporter, written by Kotaro T. Yamamoto, Masaaki K. Watahiki, Jun Matsuzaki, Soichirou Satoh and Hisayo Shimizu, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 10 April 2017 without open access.

View Article and Find Full Text PDF

Imaging analysis was carried out during the gravitropic response of etiolated Arabidopsis hypocotyls, using an IAA19 promoter fusion of destabilized luciferase as a probe. From the bright-field images we obtained the local deflection angle to the vertical, A, local curvature, C, and the partial derivative of C with respect to time, [Formula: see text]. These were determined every 19.

View Article and Find Full Text PDF

Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock.

View Article and Find Full Text PDF

Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants.

View Article and Find Full Text PDF

Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT).

View Article and Find Full Text PDF

Active phototropic bending of non-elongating and radially growing portion of stems (woody stems) has not been previously documented, whereas negative gravitropic bending is well known. We found phototropic bending in woody stems and searched for the underlying mechanism. We inclined 1-year-old Quercus crispula Blume seedlings and unilaterally illuminated them from a horizontal direction perpendicular to ('normal' illumination) or parallel to ('parallel' illumination) the inclination azimuth.

View Article and Find Full Text PDF

Background And Aims: The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes.

View Article and Find Full Text PDF