Publications by authors named "Jun Kyun Oh"

Article Synopsis
  • Food packaging is essential for maintaining food quality and safety, but concerns over environmental and health issues related to conventional materials like PFAS and microplastics are pushing for design changes.
  • PFAS compounds have been commonly used for their water and grease repellency but are linked to serious health problems, while microplastics pose risks of contaminating food.
  • The review discusses the need for sustainable alternatives, like plant-based and recycled materials, and calls for further research to improve the scalability and cost-effectiveness of these eco-friendly packaging solutions.
View Article and Find Full Text PDF

Globally, the public health domain is increasingly emphasizing the need for surfaces that can resist bacterial contamination, as the consumption of bacteria-infected substance may cause illnesses. Thus, this study aimed to modify polyurethane (PU) synthetic leather surfaces by coating their upper layer with fluorine-functionalized nano-silica particles (FNPs). This simple modification imparted omniphobic characteristics, realizing anti-biofouling and self-cleaning properties.

View Article and Find Full Text PDF

The growing prevalence of antimicrobial resistance in bacterial strains has increased the demand for preventing biological deterioration on the surfaces of films used in applications involving food contact materials (FCMs). Herein, we prepared superhydrophobic film surfaces using a casting process that involved the combination of low-density polyethylene (LDPE) with solutions containing surface energy-reducing silica (SRS). The bacterial antifouling properties of the modified film surfaces were evaluated using O157:H7 and via the dip-inoculation technique.

View Article and Find Full Text PDF

In this study, a method for preventing cross-infection through the surface coating treatment of polyurethane (PU) foam using functionalized silica nanoparticles was developed. Experimental results confirmed that the fabricated PU foam exhibited omniphobic characteristics, demonstrating strong resistance to both polar and nonpolar contaminants. Additionally, quantitative analysis using the pour plate method and direct counting with a scanning electron microscope determined that the treated material exhibited anti-adhesion properties against bacteria.

View Article and Find Full Text PDF

Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions.

View Article and Find Full Text PDF

A simple and sensitive AuNP-coated magnetic beads (AMB)-based electrochemical biosensor platform was fabricated for bioassay. In this study, AuNP-conjugated magnetic particles were successfully prepared using biotin-streptavidin conjugation. The morphology and structure of the nanocomplex were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX) and UV-visible spectroscopy.

View Article and Find Full Text PDF

Polyaniline (PANI) has been widely used as an electroactive material in various applications including sensors, electrochromic devices, solar cells, electroluminescence, and electrochemical energy storage, owing to PANI's unique redox properties. However, the chemical and electrochemical stability of PANI-based materials is not sufficiently high to maintain the performance of devices under many practical applications. Herein, we report a route to enhancing the chemical and electrochemical stability of PANI through layer-by-layer (LbL) assembly.

View Article and Find Full Text PDF

Concerns arising from accidental and occasional releases of novel industrial nanomaterials to the environment and waterbodies are rapidly increasing as the production and utilization levels of nanomaterials increase every day. In particular, two-dimensional nanosheets are one of the most significant emerging classes of nanomaterials used or considered for use in numerous applications and devices. This study deals with the interactions between 2D molybdenum disulfide (MoS) nanosheets and beneficial soil bacteria.

View Article and Find Full Text PDF

Herein, we describe interfacially-assembled [7]helicene films that were deposited on graphene monolayer using the Langmuir-Schaefer deposition by utilizing the interactions of nonplanar (helicene) and planar (graphene) π-π interactions as functional antifouling coatings. Bacterial adhesion of Staphylococcus aureus on helicene-graphene films was noticeably lower than that on bare graphene, up to 96.8% reductions in bacterial adhesion.

View Article and Find Full Text PDF

As a thermoplastic polymer with an impressive combination of mechanical properties and biological compatibility, thermoplastic polyurethane (TPU) is one of the important polymers used in various applications such as biomaterials, conducting materials, and tissue engineering. Nanocomposites made of TPUs with nanoclays were prepared by melt-compounding, and the effects of clay on antibacterial activities and physical properties of nanocomposites were investigated. X-ray powder diffraction, water contact angle, and TEM results were analyzed to investigate the effects of dispersion and modification of clays in TPU/clay nanocomposites.

View Article and Find Full Text PDF

Bacterial pathogens are responsible for millions of cases of illnesses and deaths each year throughout the world. The development of novel surfaces and coatings that effectively inhibit and prevent bacterial attachment, proliferation, and growth is one of the crucial steps for tackling this global challenge. Herein, we report a dual-functional coating for aluminum surfaces that relies on the controlled immobilization of lysozyme enzyme (muramidase) into interstitial spaces of presintered, nanostructured thin film based on ∼200 nm silica nanoparticles and the sequential chemisorption of an organofluorosilane to the available interfacial areas.

View Article and Find Full Text PDF

We present the formation of a nanobelt by self-assembly of β-benzyl GABA (γ-aminobutyric acid). This simple γ-amino acid building block self-assembled to form a well-defined nanobelt in chloroform. The nanobelt showed distinct optical properties due to π-π interactions.

View Article and Find Full Text PDF

This work is concerned with investigating the effect of substrate hydrophobicity and zeta potential on the dynamics and kinetics of the initial stages of bacterial adhesion. For this purpose, bacterial pathogens Staphylococcus aureus and Escherichia coli O157:H7 were inoculated on the substrates coated with thin thiol layers (i.e.

View Article and Find Full Text PDF

In this work, we report the formation of a novel, aqueous-based thermo-responsive, supramolecular gelling system prepared by a convenient and efficient self-assembly of a long-chain amino-amide and citric acid. To determine the viscosity behavior and to gain insights into the gelation mechanism, a complementary combination of techniques, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and sinusoidal oscillatory tests, were used. The supramolecular gelator exhibited remarkably reversible sol-gel transitions induced by temperature at 76 °C.

View Article and Find Full Text PDF

Unlabelled: This study investigates the structural properties of the hind leg femur-tibia joint in adult katydids (Orthoptera: Tettigoniidae), including its tribological and mechanical properties. It is of particular interest because the orthopteran (e.g.

View Article and Find Full Text PDF

As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach.

View Article and Find Full Text PDF

Healthcare-associated infections (HAIs) caused by pathogenic bacteria are a worldwide problem and responsible for numerous cases of morbidity and mortality. Exogenous cross-contamination is one of the main mechanisms contributing to such infections. This work investigates the potential of hydrophobically modified nanoporous silica aerogel as an antiadhesive hygienic material that can inhibit exogenous bacterial contamination.

View Article and Find Full Text PDF

Because of the growing prevalence of antimicrobial resistance strains, there is an increasing need to develop material surfaces that prevent bacterial attachment and contamination in the absence of antibiotic agents. Herein, we present bacterial antiadhesive materials inspired from rice leaves. "Rice leaf-like surfaces" (RLLS) were fabricated by a templateless, self-masking reactive-ion etching approach.

View Article and Find Full Text PDF

This work deals with adhesion of Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) on polyethylene glycol (PEG) coated tomato surfaces.

View Article and Find Full Text PDF

Peptide nanostructures assembled from an aromatic diphenylalanine have attracted considerable attention because of high thermal and mechanical stabilities of the assembled morphologies. Of diverse assembled structures, liquid crystalline peptide nanowires exhibiting optical and mechanical anisotropies can be a valuable building block for micro- or nano-fluidics, molecular electronics, and biological sensing. In this work, we investigated large scale patterning of liquid crystalline peptide nanowires and pattern transfer.

View Article and Find Full Text PDF

Highly ordered, multi-dimensional dendritic nanoarchitectures were created via self-assembly of diphenylalanine from an acidic buffer solution. The self-similarity of dendritic structures was characterized by examining their fractal dimensions with the box-counting method. The fractal dimension was determined to be 1.

View Article and Find Full Text PDF

Self-assembly of peptides has gathered particular attentions since it may provide unique properties relying on highly specific molecular recognition and structural organization. Peptides assemble into complex nanostructures through highly specific biomolecular interactions such as hydrogen bonding and hydrophobic interaction. Among various nanostructured materials, one-dimensional nanostructures, such as nanowires, nanotubes, and nanoribbons, have been intensively investigated.

View Article and Find Full Text PDF