Publications by authors named "Jun Hyuk Song"

Electrochemomechanical degradation is one of the most common causes of capacity deterioration in high-energy-density cathodes, particularly intercalation-based layered oxides. Here we reveal the presence of rotational stacking faults (RSFs) in layered lithium transition-metal oxides, arising from specific stacking sequences at different angles, and demonstrate their critical role in determining structural/electrochemical stability. Our combined experiments and calculations show that RSFs facilitate oxygen dimerization and transition-metal migration in layered oxides, fostering microcrack nucleation/propagation concurrently with cumulative electrochemomechanical degradation on cycling.

View Article and Find Full Text PDF
Article Synopsis
  • O2-type lithium-rich layered oxides effectively prevent the migration of transition metals and voltage decay, making them ideal for studying oxygen redox properties.
  • A new series of these oxides shows minimal structural changes and retains voltage stability even with high oxygen participation.
  • The study highlights the impact of oxygen redox on the structure and performance, showing that balancing redox capabilities ensures high voltage and capacity while revealing a new mechanism for capacity fading that differs from past findings.
View Article and Find Full Text PDF

Lithium-metal-halides have emerged as a class of solid electrolytes that can deliver superionic conductivity comparable to that of state-of-the-art sulfide electrolytes, as well as electrochemical stability that is suitable for high-voltage (>4 volt) operations. We show that the superionic conduction in a trigonal halide, such as LiMCl [where metal (M) is Y or Er], is governed by the in-plane lithium percolation paths and stacking interlayer distance. These two factors are inversely correlated with each other by the partial occupancy of M, serving as both a diffusion inhibitor and pillar for maintaining interlayer distance.

View Article and Find Full Text PDF

Lithium-rich layered oxides, despite their potential as high-energy-density cathode materials, are impeded by electrochemical performance deterioration upon anionic redox. Although this deterioration is believed to primarily result from structural disordering, our understanding of how it is triggered and/or occurs remains incomplete. Herein, we propose a theoretical picture that clarifies the irreversible transformation and redox asymmetry of lithium-rich layered oxides by introducing a series of global and local dynamic structural evolution processes involving slab gliding and transition-metal migration.

View Article and Find Full Text PDF

Although effort required to complete spirometry is known to differ by age, no studies have addressed this issue. The present study aimed to identify the difference in the effort required to complete spirometry by age in children and adolescents. Data from 707 children (mean age, 10.

View Article and Find Full Text PDF

Lattice oxygen redox offers an unexplored way to access superior electrochemical properties of transition metal oxides (TMOs) for rechargeable batteries. However, the reaction is often accompanied by unfavourable structural transformations and persistent electrochemical degradation, thereby precluding the practical application of this strategy. Here we explore the close interplay between the local structural change and oxygen electrochemistry during short- and long-term battery operation for layered TMOs.

View Article and Find Full Text PDF

The production of rechargeable batteries is rapidly expanding, and there are going to be new challenges in the near future about how the potential environmental impact caused by the disposal of the large volume of the used batteries can be minimized. Herein, a novel strategy is proposed to address these concerns by applying biodegradable device technology. An eco-friendly and biodegradable sodium-ion secondary battery (SIB) is developed through extensive material screening followed by the synthesis of biodegradable electrodes and their seamless assembly with an unconventional biodegradable separator, electrolyte, and package.

View Article and Find Full Text PDF

Stretchable conductors and sensors have attracted great attention for use in electronic skin and healthcare monitoring. Despite the development of many stretchable conductors, there are still very few studies that utilize the conventional methods making electrodes and circuits used in current industry. A method is proposed to fabricate a stretchable electrode pattern and a stretchable tactile sensor by simply depositing linear metal lines through a mask on a stretchable substrate.

View Article and Find Full Text PDF

We investigated, for the first time, the conditions where a thermoplastic conductive composite can exhibit completely reversible stretchability at high elongational strains (ε = 1.8). We studied a composite of Au nanosheets and a polystyrene-block-polybutadiene-block-polystyrene block copolymer as an example.

View Article and Find Full Text PDF

Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material.

View Article and Find Full Text PDF

Multilayered Au nanosheets are suggested as a novel class of material for fabricating stretchable electrodes suitable for organic-based electronic devices. The electrodes show no difference in resistivity during repeated stretching cycles of up to ϵ = 40%.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) caused by 21-hydroxylase deficiency is an autosomal recessive disease, which leads to cortisol and aldosterone deficiency and hyperandrogenism. Typical medical treatment includes oral glucocorticoid and mineralocorticoid administration to suppress adrenal androgens and to compensate for adrenal steroid deficiencies. However, some patients stopped taking medicine without the doctor's consent.

View Article and Find Full Text PDF