Selenium and its compounds in high concentration are toxic for humans, especially selenate (VI) is the most toxic due to its high solubility in water. To promote the reductive reaction of Se(vi) to Se(iv) or Se(0), which is relatively easy to remove in water, noble metal particles were added as reaction sites with a reductant. The highest removal performance of selenate in aqueous solution was achieved using rhodium particles supported on TiO (Rh/TiO).
View Article and Find Full Text PDFTo increase syngas production and minimize soot, polycyclic aromatic hydrocarbon (PAH), and CO(2) emissions resulting from biomass combustion, the evolution of biomass volatiles during O(2)/CO(2) gasification was simulated. A highly detailed soot formation reaction mechanism flowing through the reactor, involving 276 species, 2158 conventional gas phase reactions and 1635 surface phase reactions, was modeled as a plug flow reactor (PFR). The reaction temperature and pressure were varied in the range 1073-1873K and 0.
View Article and Find Full Text PDFIn a previous report where internal flows were experimentally visualized in polymer solution droplets receding on a lyophobic surface [Kaneda et al., Langmuir 2008, 24, 9102-9109], the direction of the circulation flow was found to depend on solvent and solute concentration. To identify the reason for this finding, the internal flow in the droplet is investigated numerically.
View Article and Find Full Text PDFWhen a polymer solution droplet is deposited on a lyophobic surface, the contact line is moved back to some degree and subsequently pinned. An experimental setup is constructed to investigate not only the receding process but also an internal flow of polystyrene-acetophenone and -anisole solutions. As a result, the time variation of the evaporation rate per unit area during receding does not strongly depend on the initial solute concentration.
View Article and Find Full Text PDF