Publications by authors named "Jun Eguchi"

Background: Although immune checkpoint inhibitors (ICIs) are effective cancer drugs, ICI-induced diabetes is a rare but a life-threatening adverse event for patients. The deleterious action of ICI on pancreatic beta-cell function is a concern. However, the influence of ICI on insulin synthesis and secretion in patients with cancer without diabetes remains unknown.

View Article and Find Full Text PDF

Introduction: ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not.

Research Design And Methods: Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated.

View Article and Find Full Text PDF

The global pandemic of coronavirus infection 2019 (COVID-19) was an unprecedented public health emergency. Several clinical studies reported that heart disease, lung disease, diabetes, hypertension, dyslipidemia, and obesity are critical risk factors for increased severity of and hospitalization for COVID-19. This is largely because patients with these underlying medical conditions can show poor immune responses to the COVID-19 vaccinations.

View Article and Find Full Text PDF

Key Points: Collectrin serves as a chaperone for the trafficking of neutral amino acid (AA) transporters in the apical membranes of proximal tubular cells (PTCs). knockout reduced AAs influx into PTCs, inactivated mTOR, activated transcription factor EB, improved lysosome function, and ameliorated vacuolar formation of PTCs in diabetic mice treated with streptozotocin and high-fat diet. The inhibition of neutral AA transporter, such as BAT1 (SLC6A19), and transcription factor EB activator is a new therapeutic strategy against diabetic kidney disease.

View Article and Find Full Text PDF

In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) plays a critical role in metabolic homeostasis. BAT dysfunction is associated with the development of obesity through an imbalance between energy expenditure and energy intake. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is the master regulator of adipogenesis.

View Article and Find Full Text PDF

The combination of sarcopenia and obesity (sarcopenic obesity) is associated with the development of metabolic syndrome and cardiovascular events. The molecular pathways that develop sarcopenic obesity have studied intensively. Transmembrane protein 97 (TMEM97) is 176 amino acids conserved integral membrane protein with four transmembrane domains that is expressed in several types of cancer.

View Article and Find Full Text PDF

Background: Glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) plays a crucial role in lipolytic processing. Previous studies have shown that GPIHBP1 mutations cause severe hypertriglyceridemia and that serum GPIHBP1 levels are marginally higher in patients with coronary heart disease; however, the role of GPIHBP1 in type 2 diabetes mellitus (T2DM) remains unknown.

Objective: We investigated the association between circulating GPIHBP1 levels and the prevalence of microvascular complications in T2DM.

View Article and Find Full Text PDF

Objective: We examined whether or not day-to-day variations in lipid profiles, especially triglyceride (TG) variability, were associated with the exacerbation of diabetic kidney disease.

Methods: We conducted a retrospective and observational study. First, 527 patients with type 2 diabetes mellitus (DM) who had had their estimated glomerular filtration rate (eGFR) checked every 6 months since 2012 for over 5 years were registered.

View Article and Find Full Text PDF

MicroRNAs expressed in adipocytes are involved in transcriptional regulation of target mRNAs in obesity, but miRNAs critically involved in this process is not well characterized. Here, we identified upregulation of miR-221-3p and miR-222-3p in the white adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. and are paralogous genes and share the common seed sequence and mice fed with HFHS chow demonstrated resistance to the development of obesity compared with .

View Article and Find Full Text PDF

In obesity and type 2 diabetes, numerous genes are differentially expressed, and microRNAs are involved in transcriptional regulation of target mRNAs, but miRNAs critically involved in the appetite control are not known. Here, we identified upregulation of miR-342-3p and its host gene in brain and adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. (-/-) mice fed with HFHS chow were protected from obesity and diabetes.

View Article and Find Full Text PDF

Immune checkpoint inhibitor-induced diabetes mellitus is a rare immune-related adverse event. This report illustrates clinical data and insulin secretory ability before and after the onset of immune checkpoint inhibitor-induced diabetes.

View Article and Find Full Text PDF

Although various biomarkers predict cardiovascular event (CVE) in patients with diabetes, the relationship of urinary glycan profile with CVE in patients with diabetes remains unclear. Among 680 patients with type 2 diabetes, we examined the baseline urinary glycan signals binding to 45 lectins with different specificities. Primary outcome was defined as CVE including cardiovascular disease, stroke, and peripheral arterial disease.

View Article and Find Full Text PDF

Proximal tubular cells (PTCs) are crucial for maintaining renal homeostasis, and tubular injuries contribute to progression of diabetic kidney disease (DKD). However, the roles of visceral adipose tissue-derived serine protease inhibitor (vaspin) in the development of DKD is not known. We found vaspin maintains PTCs through ameliorating ER stress, autophagy impairment, and lysosome dysfunction in DKD.

View Article and Find Full Text PDF

The adipose tissue is regarded as an endocrine organ and secretes bioactive adipokines modulating chronic inflammation and oxidative stress in obesity. Gal-9 is secreted out upon cell injuries, interacts with T-cell immunoglobulin-3 (Tim-3) and induces apoptosis in activated Th1 cells. Gal-9 also binds to protein disulfide isomerase (PDI), maintains PDI on surface of T cells, and increases free thiols in the disulfide/thiol cycles.

View Article and Find Full Text PDF

The metabolic changes and dysfunction in CD8 + T cells may be involved in tumor progression and susceptibility to virus infection in type 2 diabetes (T2D). In C57BL/6JJcl mice fed with high fat-high sucrose chow (HFS), multifunctionality of CD8 + splenic and tumor-infiltrating lymphocytes (TILs) was impaired and associated with enhanced tumor growth, which were inhibited by metformin. In CD8 + splenic T cells from the HFS mice, glycolysis/basal respiration ratio was significantly reduced and reversed by metformin.

View Article and Find Full Text PDF

Aims/introduction: The predictive low glucose management (PLGM) system was introduced in March 2018 in Japan. Although there are some reports demonstrating the benefit of PLGM in preventing hypoglycemia, no data are currently available in Japanese patients with type 1 diabetes mellitus (T1DM). The aim of the present study is to evaluate the effect of PLGM with sensor-augmented pump therapy in the prevention of hypoglycemia in Japanese patients.

View Article and Find Full Text PDF

Eight years prior to her present admission, a 61-year-old Japanese woman was diagnosed with autoimmune hepatitis, slowly progressive insulin-dependent diabetes mellitus, and chronic thyroiditis; she had been treated with oral prednisolone (PSL). After she suddenly discontinued PSL, she newly developed systemic lupus erythematosus. A combination therapy of oral PSL and intravenous cyclophosphamide resulted in remission.

View Article and Find Full Text PDF

Introduction: Acquired partial lipoatrophy has been reported after bone marrow transplantation during childhood; however, no adult cases have previously been reported. We herein report two adult cases of acquired partial lipoatrophy after transplantation.

Case Presentation: A 28-year-old Japanese woman developed diabetic ketoacidosis and received insulin therapy after bone marrow transplantation.

View Article and Find Full Text PDF

Background: Autoantibodies against glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) cause chylomicronemia by blocking the ability of GPIHBP1 to bind lipoprotein lipase (LPL) and transport the enzyme to its site of action in the capillary lumen.

Objective: A patient with multiple sclerosis developed chylomicronemia during interferon (IFN) β1a therapy. The chylomicronemia resolved when the IFN β1a therapy was discontinued.

View Article and Find Full Text PDF

Aim: Trefoil factor 3 (TFF3) is a small peptide that is involved in mucosal protection. TFF3 is widely expressed in multiple tissues including kidney tissue. Previous studies have reported that the levels of urinary TFF3 are significantly increased in patients with chronic kidney disease.

View Article and Find Full Text PDF

Objective: Because quantifying glycans with complex structures is technically challenging, little is known about the association of glycosylation profiles with the renal prognosis in diabetic kidney disease (DKD).

Research Design And Methods: In 675 patients with type 2 diabetes, we assessed the baseline urinary glycan signals binding to 45 lectins with different specificities. The end point was a decrease of estimated glomerular filtration rate (eGFR) by ≥30% from baseline or dialysis for end-stage renal disease.

View Article and Find Full Text PDF