Publications by authors named "Jun Dong Wha"

Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles.

View Article and Find Full Text PDF

Autophagy is a highly conserved cellular process in which cytoplasmic materials are degraded and recycled as energy sources when nutrient supplies are lacking. Established tumor cells require autophagy for cell growth and tumor promotion. In particular, the survival of pancreatic tumor cells appears to be strongly dependent on autophagy, referred to as autophagy addiction.

View Article and Find Full Text PDF

FANCD2 is a pivotal molecule in the pathogenesis of Fanconi anemia (FA), an autosomal recessive human syndrome with diverse clinical phenotypes, including cancer predisposition, short stature, and hematological abnormalities. In our previous study, we detected the functional association of FANC proteins, whose mutations are responsible for the onset of FA, with AMPK in response to DNA interstrand crosslinking lesions. Because AMPK is well known as a critical sensing molecule for cellular energy levels, we checked whether FANCD2 activation occurs after treatments affecting AMPK and/or cellular energy status.

View Article and Find Full Text PDF

The DNA damage response (DDR) is an emerging target for cancer therapy. By modulating the DDR, including DNA repair and cell cycle arrest, the efficacy of anticancer drugs can be enhanced and side effects reduced. We previously screened a chemical library and identified novel DDR inhibitors including DNA damage response inhibitor-9 (DDRI-9; 1H-Purine-2,6-dione,7-[(4-fluorophenyl)methyl]-3,7-dihydro-3-methyl-8-nitro).

View Article and Find Full Text PDF

Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs), one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC), activates the Fanconi anemia (FA)/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance.

View Article and Find Full Text PDF

Long-term dexamethasone (DEX) treatment is well known for its ability to increase insulin resistance in liver and adipose tissues leading to hyperinsulinemia. On the other hand, exercise enhances peripheral insulin sensitivity. However, it is not clear whether DEX and/or exercise affect beta-cell mass and function in diabetic rats, and whether their effects can be associated with the modulation of the insulin/IGF-I signaling cascade in pancreatic beta-cells.

View Article and Find Full Text PDF

Exercise and dexamethasone (DEX) are known to have opposite effects on peripheral insulin resistance. However, their effects and mechanism on brain glucose metabolism have been poorly defined. We investigated the modulation of the hypothalamo-pituitary-adrenal (HPA) axis and insulin/leptin signaling associated with glucose utilization in the brains of 90% pancreatectomized diabetic rats, which had been administered two dosages of DEX and exercised for 8 weeks.

View Article and Find Full Text PDF

In the present study, we screened candidates for enhancing insulin action, using glucose uptake as an indicator, from Liriope platyphylla Wang et Tang (LPWT) extract, Liliaceae, in 3T3-L1 adipocytes. The mechanism of insulin sensitizing action in the fractions was also investigated. LPWT extract with 70% MeOH was sequentially separated with Diaion HP-20 and silica gel column chromatography.

View Article and Find Full Text PDF

Background: Recent research has reported that high sugar diets increase insulin resistance, without abdominal obesity, in male, but not female Wistar rats. Whether a high sucrose (SU) diet increased insulin resistance in ovariectomized (OVX) rats was determined.

Methods: Female Sprague Dawley rats, weighing 273 +/- 20 g, had either an ovariectomy or a sham operation (sham).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: