Publications by authors named "Jun Aishima"

The highly automated macromolecular crystallography beamline AMX/17-ID-1 is an undulator-based high-intensity (>5 × 10 photons s), micro-focus (7 µm × 5 µm), low-divergence (1 mrad × 0.35 mrad) energy-tunable (5-18 keV) beamline at the NSLS-II, Brookhaven National Laboratory, Upton, NY, USA. It is one of the three life science beamlines constructed by the NIH under the ABBIX project and it shares sector 17-ID with the FMX beamline, the frontier micro-focus macromolecular crystallography beamline.

View Article and Find Full Text PDF

Here we present two robotic sample changers integrated into the experimental stations for the macromolecular crystallography (MX) beamlines AMX and FMX, and the biological small-angle scattering (bioSAXS) beamline LiX. They enable fully automated unattended data collection and remote access to the beamlines. The system designs incorporate high-throughput, versatility, high-capacity, resource sharing and robustness.

View Article and Find Full Text PDF

Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J.

View Article and Find Full Text PDF

Exceptionally large crystals of posnjakite, CuSO(OH)(HO), formed during corrosion of a Swagelock(tm) Snubber copper gasket within the MX1 beamline at the ANSTO-Melbourne, Australian Synchrotron. The crystal structure was solved using synchrotron radiation to = 0.029 and revealed a structure based upon [Cu(OH)(HO)O] sheets, which contain Jahn-Teller-distorted Cu octa-hedra.

View Article and Find Full Text PDF

MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8-21 keV to a focal spot of 22 × 12 µm FWHM (H × V).

View Article and Find Full Text PDF

Synchrotron light source facilities worldwide generate terabytes of data in numerous incompatible data formats from a wide range of experiment types. The Data Analysis WorkbeNch (DAWN) was developed to address the challenge of providing a single visualization and analysis platform for data from any synchrotron experiment (including single-crystal and powder diffraction, tomography and spectroscopy), whilst also being sufficiently extensible for new specific use case analysis environments to be incorporated (e.g.

View Article and Find Full Text PDF

A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection.

View Article and Find Full Text PDF

Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate.

View Article and Find Full Text PDF

A novel raster-scanning method combining continuous sample translation with the fast readout of a Pilatus P6M detector has been developed on microfocus beamline I24 at Diamond Light Source. This fast grid-scan tool allows the rapid evaluation of large sample volumes without the need to increase the beam size at the sample through changes in beamline hardware. A slow version is available for slow-readout detectors.

View Article and Find Full Text PDF

Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface.

View Article and Find Full Text PDF

The 2.1-A resolution crystal structure of the MATalpha2 homeodomain bound to DNA reveals the unexpected presence of two nonspecifically bound alpha2 homeodomains, in addition to the two alpha2 homeodomains bound to canonical alpha2 binding sites. One of the extra homeodomains makes few base-specific contacts, while the other extra homeodomain binds to DNA in a previously unobserved manner.

View Article and Find Full Text PDF

Hoogsteen base pairs within duplex DNA typically are only observed in regions containing significant distortion or near sites of drug intercalation. We report here the observation of a Hoogsteen base pair embedded within undistorted, unmodified B-DNA. The Hoogsteen base pair, consisting of a syn adenine base paired with an anti thymine base, is found in the 2.

View Article and Find Full Text PDF