This study investigates the atmospheric boundary layer structure based on multiple-level tower observations with a height of 350 m during the landfall of Super Typhoon Mangkhut (2018). Results show a layer of log wind profile outside of the radius of maximum wind speed with a height of 100 m or larger. The log layer height increases with the wind speed.
View Article and Find Full Text PDFHelical rolls are known to play a significant role in modulating both the mean and turbulence structure of the atmospheric boundary layer in tropical cyclones. However, in-situ measurements of these rolls have been limited due to safety restrictions. This study presents analyses of data collected by an aircraft operated by the Hong Kong Observatory in Typhoon Kalmaegi (1415) and Typhoon Nida (1604).
View Article and Find Full Text PDFThis study presents wind observations from an airborne Doppler Wind Lidar (ADWL) in 2016 tropical cyclones (TC). A description of ADWL measurement collection and quality control methods is introduced for the use in a TC environment. Validation against different instrumentation on-board the National Oceanographic and Atmospheric Administration's WP-3D aircraft shows good agreement of the retrieved ADWL measured wind speed and direction.
View Article and Find Full Text PDF