Inadequate oxygenation is one of the chief culprits for delayed wound healing. However, current oxygen therapies, such as hyperbaric oxygen therapy and topical oxygen therapy, face hurdles in providing sustained and long-term oxygenation to reverse wound hypoxia. Furthermore, their efficacy in rejuvenating wound injury is restricted by limited penetration of oxygen in the wound bed.
View Article and Find Full Text PDFWith an increasing proportion of drug-resistant bacteria, photothermal therapy (PTT) is a promising alternative to antibiotic treatment for infected diabetic skin ulcers. However, the inevitable thermal damage to the tissues restricts its clinical practice. Carbon monoxide (CO), as a bioactive gas molecule, can selectively inhibit bacterial growth and promote tissue regeneration, which may be coordinated with PTT for drug-resistant bacteria killing and tissue protection.
View Article and Find Full Text PDFAlthough a few injectable hydrogels have shown a reliable biosafety and a moderate promise in treating myocardial infarction (MI), the updated hydrogel systems with an on-demand biodegradation and multi-biofunctions to deliver therapeutic drug would achieve more prominent efficacy in the future applications. In this report, a conductive and injectable hydrogel crosslinked by matrix metalloproteinase-sensitive peptides (MMP-SP) was rationally constructed to stabilize hypoxia-inducible factor-1α (HIF-1α) to recover heart functions after MI. Firstly, tetraaniline (TA) was incorporated into partially oxidized alginate (ALG-CHO) to endow the hydrogels with conductivity.
View Article and Find Full Text PDFVarious nanoparticles as drug delivery system provide significant improvements in the cancer treatment. However, their clinical success remains elusive in large part due to their inability to overcome both systemic and tumor tissue barriers. The nanosystems with nanoproperty-transformability (surface, size, stability and target) hold great promise for achieving enhanced delivery efficacy.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) as drug delivery systems have shown great promise, but their pharmaceutical applications are often limited by complex building blocks, tedious preparations, irregular shape, and uncontrolled drug release within target cells. Herein, a facile strategy is developed to prepare PEGylated redox-responsive nanoscale COFs (denoted F68@SS-COFs) for efficiently loading and delivering doxorubicin (DOX) by use of FDA-approved Pluronic F68 and commercially available building blocks. The obtained F68@SS-COFs with controlled size, high stability, and good biocompatibility can not only achieve a very high DOX-loading content (about 21%) and very low premature leakage at physiological condition but can also rapidly respond to the tumor intracellular microenvironment and efficiently release DOX to kill tumor cells.
View Article and Find Full Text PDF