Proteins are fundamental to biochemical processes and critical in hemodialysis. This study investigates the impact of pH on human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF) interactions with polyarylethersulfone (PAES) hemodialysis membranes. A multi-method approach was utilized, including protein crystallography for structural insights, hydration layer analysis to explore solvation and interaction potentials, molecular docking using AutoDock 4.
View Article and Find Full Text PDFDialysis membranes are not hemocompatible with human blood, as the patients are suffering from the blood-membrane interactions' side effects. Zwitterionic structures have shown improved hemocompatibility; however, their complicated synthesis hinders their commercialization. The goal of the study is to achieve fast functionalization for carboxybetaine and sulfobetaine zwitterionic immobilization on PES membranes while comparing the stability and the targeted hemocompatibility.
View Article and Find Full Text PDFThe goal of the current study is to enhance the hemocompatibility of polyethersulfone (PES) membranes using heparin immobilization. Heparin was immobilized covalently and via electrostatic interaction with the positively charged PES surface (pseudo-zwitterionic (pZW) complex) to investigate the influence of each method on the membrane hemocompatibility. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging, available at the Canadian Light Source (CLS), was used to critically assess the fibrinogen adsorption to the newly synthesized membranes qualitatively and quantitatively using an innovative synchrotron-based X-ray tomography technique.
View Article and Find Full Text PDFProtein bound uremic toxins (PBUTs) are small substances binding to larger proteins, mostly human serum albumin (HSA), and are challenging to remove by hemodialysis (HD). Among different classes of PBUTs, p-cresyl sulfate (PCS) is the most widely used marker molecule and major toxin, as 95 % is bound to HSA. PCS has a pro-inflammatory effect and increases both the uremia symptom score and multiple pathophysiological activities.
View Article and Find Full Text PDF