Acta Crystallogr Sect F Struct Biol Cryst Commun
August 2008
The L-asparaginases from Escherichia coli and Erwinia chrysanthemi are effective drugs that have been used in the treatment of acute childhood lymphoblastic leukaemia for over 30 years. However, despite their therapeutic potential, they can cause serious side effects as a consequence of their intrinsic glutaminase activity, which leads to L-glutamine depletion in the blood. Consequently, new asparaginases with low glutaminase activity, fewer side effects and high activity towards L-asparagine are highly desirable as better alternatives in cancer therapy.
View Article and Find Full Text PDFBacterial L-asparaginases are enzymes that catalyze the hydrolysis of l-asparagine to aspartic acid. For the past 30 years, these enzymes have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy, and other dysfunctions.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2005
Bacterial L-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, L-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of L-asparagine and L-glutamine in the blood.
View Article and Find Full Text PDFECAR-LANS, the recombinant L-asparaginase from Erwinia carotovora, is a prospective therapeutic enzyme for leukaemia treatment. An efficient and economical scheme was developed for the purification, cloning and expression in Eschericha coli of ECAR-LANS. More than 90% purity, complemented with 72% active enzyme recovery, was achieved with a single chromatographic purification step.
View Article and Find Full Text PDFTo gain greater insight into the nature of the bleeding tendency in hemophilia, we compared the spatial dynamics of clotting in platelet-free plasma from healthy donors and from patients with severe hemophilia A or B (factor VIII:C or IX:C<1%). Clotting was initiated via the intrinsic or extrinsic pathway in a thin layer of nonstirred plasma by bringing it in contact with the glass or fibroblast monolayer surface. The results suggest that clot growth is a process consisting of two distinct phases, initiation and elongation.
View Article and Find Full Text PDF