This paper proposes an architecture of the system that provides support for collaborative research focused on analysis of data acquired using Triggerfish contact lens sensor and devices for continuous monitoring of cardiovascular system properties. The system enables application of machine learning (ML) models for glaucoma diagnosis without direct intraocular pressure measurement and independently of complex imaging techniques used in clinical practice. We describe development of ML models based on sensor data and measurements of corneal biomechanical properties.
View Article and Find Full Text PDFThe pioneering nature of this work covers the answers to two questions: (1) Is an up-to-date anatomical model of the larynx needed for modern endoscopic diagnostics, and (2) can such a digital segmentation model be utilized for deep learning purposes. The idea presented in this article has never been proposed before, and this is a breakthrough in numerical approaches to aerodigestive videoendoscopy imaging. The approach described in this article assumes defining a process for data acquisition, integration, and segmentation (labeling), for the needs of a new branch of knowledge: digital medicine and digital diagnosis support expert systems.
View Article and Find Full Text PDFThis paper outlines the major components and function of the technologically integrated oncosimulator developed primarily within the Advancing Clinico Genomic Trials on Cancer (ACGT) project. The Oncosimulator is defined as an information technology system simulating in vivo tumor response to therapeutic modalities within the clinical trial context. Chemotherapy in the neoadjuvant setting, according to two real clinical trials concerning nephroblastoma and breast cancer, has been considered.
View Article and Find Full Text PDF