Publications by authors named "Julius Oppermann"

Purpose: In recent years, ultra-high dose rate (UHDR) irradiation has emerged as a promising innovative approach to cancer treatment. Characteristic feature of this regimen, commonly referred to as FLASH effect, demonstrated primarily for electrons, photons, or protons, is the improved normal tissue sparing, whereas the tumor control is similar to the one of the conventional dose-rate (CDR) treatments. The FLASH mechanism is, however, unknown.

View Article and Find Full Text PDF

Background And Purpose: The FLASH effect is a potential breakthrough in radiotherapy because ultra-high dose-rate irradiation can substantially widen the therapeutic window. While the normal tissue sparing at high doses and short irradiation times has been demonstrated with electrons, photons, and protons, so far evidence with heavy ions is limited to in vitro cell experiments. Here we present the first in vivo results with high-energy C-ions delivered at an ultra-high dose rate.

View Article and Find Full Text PDF

Objectives: Aim of the study was to evaluate the prognostic impact of CD8-positive (CD8) tumour-infiltrating lymphocytes (TILs) and PD-L1 expression on the outcome of patients with malignant salivary gland neoplasms.

Materials And Methods: Formalin-fixed, paraffin-embedded tissue samples and clinicopathological data from patients treated for salivary gland carcinoma in a head and neck cancer centre were retrospectively retrieved. Immunohistochemical staining was applied on sections of 84 specimens of 12 different histological subtypes.

View Article and Find Full Text PDF

Definitive chemoradiation (CRT) followed by high-dose-rate (HDR) brachytherapy (BT) represents state-of-the-art treatment for locally-advanced cervical cancer. Despite use of this treatment paradigm, disease-related outcomes have stagnated in recent years, indicating the need for biomarker development and improved patient stratification. Here, we report the association of Polo-like kinase (PLK) 3 expression and Caspase 8 T273 phosphorylation levels with survival among patients with cervical squamous cell carcinoma (CSCC) treated with CRT plus BT.

View Article and Find Full Text PDF

Background: In the present study, we aimed to investigate the effect of counteracting inhibitor of apoptosis (IAP) proteins using the small molecule Second Mitochondria-derived Activator of Caspase (SMAC) mimetic BV6 in combination with ionizing radiation on apoptosis, cell cycle regulation, DNA double-strand break (DSB) repair, three-dimensional (3D) clonogenic survival and expression of IAPs in colorectal carcinoma cells.

Material And Methods: Colorectal cancer cell lines (HCT-15, HT-29, SW480) were subjected to BV6 treatment (0-4 μM) with or without irradiation (2-8 Gy, single dose) followed by MTT, Caspase 3/7 activity, γH2AX/53BP1 foci assays, AnnexinV staining, cell cycle analysis, 3D colony forming assays and Western blotting (cellular IAP1 (cIAP1) and cIAP2, Survivin, X-linked IAP (XIAP)).

Results: BV6 treatment decreased cell viability and significantly increased irradiation-induced apoptosis as analyzed by Caspase 3/7 activity, AnnexinV-positive and subG1 phase cells.

View Article and Find Full Text PDF