Publications by authors named "Julius Numbonui Ghogomu"

Organic light emitting diode (OLED) and organic solar cell (OSC) properties of ethyl 4-[()-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and its Pt, Pd, Ni, Ir, Rh, and Zn complexes have been theoretically studied herein. Geometry optimizations have been performed the rSCAN-3c composite method while single-point calculations have been carried out at the PBE0-D3(BJ)/def2-TZVP level of theory. Results have shown that complexation with selected metal ions improves hole and electron transfer rates in Pt[EMAB] and Rh[EMAB] .

View Article and Find Full Text PDF

Context: In the present work, the influence of aromatic ring substitution on a series of small-donor organic molecules (A, B, C, D, and E) with isoxazole cores was investigated for photovoltaic applications in organic solar cells. Frontier molecular orbital analysis, chemical reactivity descriptors, dipole moment, and population analysis showed that all the organic materials have intramolecular charge transfer abilities capable of donating electrons to the acceptor material (PCBM). The required photovoltaic parameters such as V, FF, J, LHE, and other associated optoelectronic parameters are reported.

View Article and Find Full Text PDF

In this paper, the DFT/M05-2X-D3/6-31+G(d,p) theoretical chemistry method is used to probe the adsorption ability of pure and boron doped C toward the temozolomide (TMZ) anticancer drug. The study is conducted in both gas and aqueous phases. The positive values of the Gibbs free energy of formation (12.

View Article and Find Full Text PDF

The nonlinear optical (NLO) properties of ethyl 4-[()-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and some of its derivatives are investigated herein using the density functional theory (DFT) and time-dependent (TD)-DFT methods. The density functionals B3LYP, CAM-B3LYP, M06-2X and B97XD, and basis sets 6-31 + G**, 6-311 + + G** and Def2-TZVPP have been used. From the results, EMAB and its substituted derivatives studied are promising candidates for NLO materials.

View Article and Find Full Text PDF

The emergence of artemisinin-resistant variants of Plasmodium falciparum necessitates the urgent search for novel antimalarial drugs. In this regard, an in silico study to screen antimalarial drug candidates from a series of benzimidazole-thiosemicarbazone hybrid molecules with interesting antiplasmodial properties and explore their falcipain-2 (FP2) inhibitory potentials has been undertaken herein. FP2 is a key cysteine protease that degrades hemoglobin in Plasmodium falciparum and is an important biomolecular target in the development of antimalarial drugs.

View Article and Find Full Text PDF

Samples of cobalt-doped neodymium orthoferrite compounds, NdCoFeO (0.0 ≤ x ≤ 0.5) were synthesized via glycine auto-combustion between 250 and 300°C and calcined at 500°C for 2 h.

View Article and Find Full Text PDF

Herein is presented a density functional theory (DFT) study of reactivity and structural properties of transition metal complexes of the Schiff base ligand 2,2'(1E,1'E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)dibenzoic acid (hereafter denoted EDA2BB) with Cu(II), Mn(II), Ni(II), and Co(II). The quantum theory of atoms-in-molecules (QTAIM), conceptual DFT, natural population analysis (NPA), and molecular electrostatic potential (MEP) methods have been used. Results have revealed a distorted octahedral geometry around the central metal ion in each gas phase complex.

View Article and Find Full Text PDF

Density functional calculations were used to explore the complexation of 3-alkyl-4-phenylacetylamino-4,5-dihydro-1h-1,2,4-triazol-5-one (ADPHT) derivatives by first-row transition metal cations. Neutral ADPHT ligand and mono deprotonated ligands have been used. Geometry optimizations have been performed in gas-phase and solution-phase (water, benzene, and N,N-dimethylformamide (DMF)) with B3LYP/Mixed I (LanL2DZ for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) and with B3LYP/Mixed II (6-31G(d) for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) especially in the gas-phase.

View Article and Find Full Text PDF

Thiosemicarbazones display diverse pharmacological properties, including antimalarial activities. Their pharmacological activities have been studied in depth, but little of this research has focused on their antimalarial mode of action. To elucidate this antimalarial mechanism, we investigated the nature of the interactions between iron(III) protoporphyrin IX (Fe(III)PPIX) and the thione-thiol tautomers of 4-methoxyacetophenone thiosemicarbazone (MAPTSC).

View Article and Find Full Text PDF

The chelating ability of juglone and two of its derivatives towards Feion and the antioxidant activity (AOA) of the resulting chelates and complexes (in the presence of HO and CHOH as ligands) in gas phase is reported via bond dissociation enthalpy, ionization potential, proton dissociation enthalpy, proton affinity, and electron transfer enthalpy. The DFT/B3LYP level of theory associated with the 6-31+G(d,p) and 6-31G(d) Pople-style basis sets on the atoms of the ligands and the central Fe(II), respectively, was used. Negative chelation free energies obtained revealed that juglone derivatives possessing the O-H substituent (L) have the greatest ability to chelate Fe ion.

View Article and Find Full Text PDF