Publications by authors named "Julius N Korley"

Pulmonary infections complicate chronic lung diseases requiring attention to both the pathophysiology and complexity associated with infection management. Patients with cystic fibrosis (CF) struggle with continuous bouts of pulmonary infections, contributing to lung destruction and eventual mortality. Additionally, CF patients struggle with airways that are highly viscous, with accumulated mucus creating optimal environments for bacteria colonization.

View Article and Find Full Text PDF

Background Venous neointimal hyperplasia and venous stenosis (VS) formation can result in a decrease in arteriovenous fistula (AVF) patency in patients with end-stage renal disease. There are limited therapies that prevent VNH/VS. Systemic delivery of simvastatin has been shown to reduce VNH/VS but local delivery may help decrease the side effects associated with statin use.

View Article and Find Full Text PDF

Minocycline (MNC) is a tetracycline antibiotic capable of associating with cyclodextrin (CD), and it is a frontline drug for many instances of implant infection. Due to its broad-spectrum activity and long half-life, MNC represents an ideal drug for localized delivery; however, classic polymer formulations, particularly hydrogels, result in biphasic release less suitable for sustained anti-microbial action. A polymer delivery system capable of sustained, steady drug delivery rates poses an attractive target to maximize the antimicrobial activity of MNC.

View Article and Find Full Text PDF

Amphotericin B (AmB) is an effective and commonly used antifungal agent. However, nephrotoxicity and poor solubility limits its usage. The proposed polymerized cyclodextrin (pCD) system therefore is an attractive method for AmB delivery, as it retains the antifungal activity of AmB while decreasing toxicity, and confining drug release to the local environment.

View Article and Find Full Text PDF

Unlabelled: Current post-operative standard of care for surgical procedures, including device implantations, dictates prophylactic antimicrobial therapy, but a percentage of patients still develop infections. Systemic antimicrobial therapy needed to treat such infections can lead to downstream tissue toxicities and generate drug-resistant bacteria. To overcome issues associated with systemic drug administration, a polymer incorporating specific drug affinity has been developed with the potential to be filled or refilled with antimicrobials, post-implantation, even in the presence of bacterial biofilm.

View Article and Find Full Text PDF

Background: Infection remains a dreaded complication after implantation of surgical prosthetics, particularly after hernia repair with synthetic mesh. We previously demonstrated the ability of a newly developed polymer to provide controlled release of an antibiotic in a linear fashion over 45 d. We subsequently showed that coating mesh with the drug-releasing polymer prevented a Staphylococcus aureus (SA) infection in vivo.

View Article and Find Full Text PDF

The one-step synthesis of a polyester family containing dihydroxyacetone is described along with a quantitative analysis of in vitro/in vivo degradation kinetics and initial biocompatibility. Polyesters were synthesized by combining dihydroxyacetone, which is a diol found in the eukaryotic glucose metabolic pathway, with even-carbon aliphatic diacids (adipic, suberic, sebacic) represented in the long-chain alpha carboxylic acid metabolic pathway, by Schӧtten-Baumann acylation. We show that by using a crystalline monomeric form of dihydroxyacetone, well-defined polyesters can be formed in one step without protection and deprotection strategies.

View Article and Find Full Text PDF

Polyethylenimine is a popular DNA transfection reagent, and many approaches have been explored to further enhance its transfection efficiency. Substitution of branched polyethylenimine's primary amine groups is an attractive approach because it is amenable to a variety of chemistries and is also implicated as a primary factor in its cytotoxicity. The purpose of this work was to serially substitute saturated hydrocarbons to branched polyethylenimine and determine what structure/function relationships exist between the hydrocarbon length and its degree of substitution, relative to transfection efficiency in multiple cell lines.

View Article and Find Full Text PDF