The results on zirconia-amine bifunctional modification of hierarchically porous silica monoliths for continuous-flow processes ar presented. The study reports the synthesis and properties of the modified porous monoliths and their performance in the tandem process of deacetalization-Knoevenagel condensation reaction. The properties of the materials were studied by thermal analysis, FTIR spectroscopy, XRF and nitrogen adsorption.
View Article and Find Full Text PDFEthyl α-cyanocinnamate was synthesized in the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate in flow monolithic microreactor of 0.63 cm volume. The catalytically active core was made of silica monolith modified with various amine group precursors.
View Article and Find Full Text PDFAiming at the preparation of efficient, stable on storage and recyclable nanobiocatalysts for enantioselective transesterification, alkaline lipase from Pseudomonas fluorescens was covalently immobilized (up to 8.5wt.%) on functionalized multi-wall carbon nanotubes (f-MWCNTs).
View Article and Find Full Text PDFIn order to produce effective and recyclable catalysts for enantioselective transesterification in the industrial applications, alkaline lipase from Pseudomonas fluorescens was non-covalently immobilised (ca. 6 wt%) on pristine multi-wall carbon nanotubes (MWCNTs) and oxidised MWCNTs (O-MWCNTs) using an adsorption technique. Mesoporous silica modified with n-octyl groups was used as a reference support.
View Article and Find Full Text PDFThe surface acidity of different mesoporous titanium-silicates, such as well-organized hexagonally packed Ti-MMM, Ti-MMM-2, Ti-SBA-15, and amorphous TiO(2)-SiO(2) mixed oxides (aerogels and xerogels), was studied by means of FTIR spectroscopy of CO adsorbed at 80 K and CD(3)CN adsorbed at 293 K. The surface hydroxyl groups of mesoporous titanium-silicates with 2-7 wt % Ti revealed a Brönsted acidity slightly higher to that of pure silicate. TiO(2)-SiO(2) xerogels revealed the highest Brönsted acidity among the titanium-silicates studied.
View Article and Find Full Text PDFProperties of silica xerogels and aerogels synthesized using a number of prepolymerized silica precursors were probed by 29Si magic-angle spinning (MAS) NMR spectroscopy, the small-angle X-ray scattering (SAXS) method, the nitrogen adsorption method, and transmission electron microscopy (TEM) to show that xerogels with attractive textural properties can easily be prepared using this type of precursors and the conventional one-step, base procedure. Pore sizes and overall pore volumes in these materials can be notably larger than those in the corresponding materials synthesized using tetraethoxysilane. This positive effect stems from the stronger structure of the polymeric network due to a higher degree of silica condensation on one side and a larger thickness of polymeric chains on the other.
View Article and Find Full Text PDF