Cellulose, the most abundant biopolymer on earth, is produced at different ratios by all land plants. Since the morphology and crystallinity of cellulose are key factors involved in its enzymatic hydrolysis, in the present work, we tackled the study of the effects of such variables on the nanocellulose conversion into glucose. Cellulase from Trichoderma sp at 37 °C was used to produce glucose, the best results were found for the cellulose nanoplatelets (S-CNP) after 60 h of hydrolysis, which afforded a conversion of 47% to glucose, in contrast to 15% for the non-purified sample (W-CP) and 22% for microcrystalline cellulose (MCC20) used as control.
View Article and Find Full Text PDF